首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple states in river and lake ecosystems   总被引:6,自引:0,他引:6  
Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates.  相似文献   

2.
Prediction of ecosystem response to global environmental change is a pressing scientific challenge of major societal relevance. Many ecosystems display nonlinear responses to environmental change, and may even undergo practically irreversible ‘regime shifts’ that initiate ecosystem collapse. Recently, early warning signals based on spatiotemporal metrics have been proposed for the identification of impending regime shifts. The rapidly increasing availability of remotely sensed data provides excellent opportunities to apply such model‐based spatial early warning signals in the real world, to assess ecosystem resilience and identify impending regime shifts induced by global change. Such information would allow land‐managers and policy makers to interfere and avoid catastrophic shifts, but also to induce regime shifts that move ecosystems to a desired state. Here, we show that the application of spatial early warning signals in real‐world landscapes presents unique and unexpected challenges, and may result in misleading conclusions when employed without careful consideration of the spatial data and processes at hand. We identify key practical and theoretical issues and provide guidelines for applying spatial early warning signals in heterogeneous, real‐world landscapes based on literature review and examples from real‐world data. Major identified issues include (1) spatial heterogeneity in real‐world landscapes may enhance reversibility of regime shifts and boost landscape‐level resilience to environmental change (2) ecosystem states are often difficult to define, while these definitions have great impact on spatial early warning signals and (3) spatial environmental variability and socio‐economic factors may affect spatial patterns, spatial early warning signals and associated regime shift predictions. We propose a novel framework, shifting from an ecosystem perspective towards a landscape approach. The framework can be used to identify conditions under which resilience assessment with spatial remotely sensed data may be successful, to support well‐informed application of spatial early warning signals, and to improve predictions of ecosystem responses to global environmental change.  相似文献   

3.
Marine ecosystems such as the Baltic Sea are currently under strong atmospheric and anthropogenic pressure. Besides natural and human-induced changes in climate, major anthropogenic drivers such as overfishing and anthropogenic eutrophication are significantly affecting ecosystem structure and function. Recently, studies demonstrated the existence of alternative stable states in various terrestrial and aquatic ecosystems. These so-called ecosystem regime shifts have been explained mainly as a result of multiple causes, e.g. climatic regime shifts, overexploitation or a combination of both. The occurrence of ecosystem regime shifts has important management implications, as they can cause significant losses of ecological and economic resources. Because of hysteresis in ecosystem responses, restoring regimes considered as favourable may require drastic and expensive management actions. Also the Baltic Sea, the largest brackish water body in the world ocean, and its ecosystems are strongly affected by atmospheric and anthropogenic drivers. Here, we present results of an analysis of the state and development of the Central Baltic Sea ecosystem integrating hydroclimatic, nutrient, phyto- and zooplankton as well as fisheries data. Our analyses of 52 biotic and abiotic variables using multivariate statistics demonstrated a major reorganization of the ecosystem and identified two stable states between 1974 and 2005, separated by a transition period in 1988–1993. We show the change in Baltic ecosystem structure to have the characteristics of a discontinuous regime shift, initiated by climate-induced changes in the abiotic environment and stabilized by fisheries-induced feedback loops in the food web. Our results indicate the importance of maintaining the resilience of an ecosystem to atmospherically induced environmental change by reducing the anthropogenic impact.  相似文献   

4.
Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.  相似文献   

5.
徐驰  王海军  刘权兴  王博 《生物多样性》2020,28(11):1417-627
许多生态系统可能在短时间内发生难以预料的状态突变, 其中一些生态系统突变的机理可以用多稳态理论进行解释。近年来生态系统的多稳态和突变现象及其机理吸引了研究者和管理者的广泛关注。本文重点对生态系统多稳态的理论基础、识别方法及稳态转换发生的早期预警信号进行综述, 并基于典型生态系统过程对现实世界中可能观测到的稳态转换进行实例分析, 最后对多稳态概念框架和理论应用中的潜在争议进行讨论, 以期为非线性生态系统动态的理论研究、管理实践和生物多样性保护等提供参考。  相似文献   

6.
DNA topoisomerases (topos) and DNA polymerases (pols) are involved in many aspects of DNA metabolism such as replication reactions. We reported previously that long chain unsaturated fatty acids such as polyunsaturated fatty acids (PUFA) (i.e., eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)) inhibited the activities of eukaryotic pols in vitro. In the present study, we found that PUFA also inhibited human topos I and II activities, and the inhibitory effect of conjugated fatty acids converted from EPA and DHA (cEPA and cDHA) on pols and topos was stronger than that of normal EPA and DHA. cEPA and cDHA inhibited the activities of mammalian pols and human topos, but did not affect the activities of plant and prokaryotic pols or other DNA metabolic enzymes tested. cEPA was a stronger inhibitor than cDHA with IC(50) values for mammalian pols and human topos of 11.0-31.8 and 0.5-2.5 microM, respectively. Therefore, the inhibitory effect of cEPA on topos was stronger than that on pols. Preincubation analysis suggested that cEPA directly bound both topos I and II, but did not bind or interact with substrate DNA. This is the first report that conjugated PUFA such as cEPA act as inhibitors of pols and topos. The results support the therapeutic potential of cEPA as a leading anti-cancer compound that poisons pols and topos.  相似文献   

7.
宋明华  朱珏妃  牛书丽 《生态学报》2020,40(18):6282-6292
生态系统在气候变化和土地利用及人类活动等的影响下其状态会由某一稳态转变到另一稳态。由于环境压力的复杂性、非线性、随机性等特征,往往导致状态转变表现为非线性、突变、跃变等特点。准确界定系统状态跃变的拐点或阈值点存在很大的挑战,而捕捉接近临界拐点前的生态系统结构和属性上的变化特征作为早期预警信号是切实可行的。早期预警信号理论经历理论框架构建、方法确立、机理认知等近半个多世纪的探索,已经由最初的通过仅依赖检测临界点恢复力的速率减慢、方差增加、系统自相关增强等统计学信号过度到更加多样化的检测方法,如检测系统组分属性的变化特征,诊断系统组分各属性之间的关系变化,系统组分的性状变化、系统组分网络结构变化等等,并且试图整合多信号提高预警的精确性。利用来自自然生态系统的长时间高密度数据集和空间代替时间的数据集,基于多度及性状信号的早期预警,结合稳定性、临界恢复力的减速、以及统计参数的指示作用对系统跃变进行早期诊断和预警是预测生态学的主旨。早期预警信号的深入研究不仅能够完善已有理论的不足,同时还能够为生态系统的保护和管理提供切实有效的理论指导。  相似文献   

8.
The National assessment of ecosystem services of Russia is an urgent task taking into account their key importance for maintaining the quality of life of the population and the regulation of biosphere processes. The purpose of the present paper is to propose a natural science methodology for evaluation supplied, demanded and consumed ecosystem services for national ecosystem assessment of Russia.Supplied ecosystem services were considered as services produced by ecosystems regardless of presence or absence of people, demanded – as the volume of services that is necessary for people and economy, consumed – as services actually used by people. Ratios between these three volumes of ecosystem services reveal the degree of service use and degree of meeting the demand for service that are analogous to indices of ecosystem service budget.The proposed methodology was tested in the preparation of the Prototype of the National Report on Ecosystem Services of Russia. Ecosystem services of air and water purification are considered as examples in the present paper.These examples demonstrate that proposed methodology is useful for estimation of surplus or deficit in ecosystem services across regions and identification of ecological risk areas. It also allows regional comparison at national level.  相似文献   

9.
In recent years, there has been an increasing interest in the study of the spatial link between service providing areas (SPA) and service benefiting areas (SBA). Understanding the spatial link between SPAs and SBAs is essential when studying the ecosystem service delivery and the fulfilment of ecosystem service demand. However, far too little attention has been paid to the user movement related ecosystem services and where people should be geographically situated in order to benefit from these services. In the movement related services, benefiting areas are equal to providing areas and the spatial link from residential area to SPA is important. The spatial link is addressed through the concept of accessibility which determines the opportunity to move from the area where beneficiaries are located to areas where ecosystem services are produced.This study presents an accessibility approach to the ecosystem services research. Accessibility analyses offer an opportunity to identify the gap between the ecosystems’ potential to produce services and the actual usage possibilities of such services. We demonstrate the suitability of the method by using outdoor recreation and cultural heritage as examples of cultural ecosystem services that people actively want to reach. Accessibility was calculated using a geographical information system-based least-cost path analysis, which measures travel time by car between residential location and the nearest SPA via road network.The examples highlight that accessibility varies according to the ecosystem service and depends mostly on population distribution and travel possibilities. Our results demonstrate that the density of the analysed ecosystem service opportunities is higher near urban areas than elsewhere. The accessibility of different ecosystem services also depends on how much time people are willing to spend for reaching these services. Our study emphasised that, from a population perspective, accessibility analyses provide a powerful tool for illustrating the utilisation possibilities of spatially distributed ecosystem services. The accessibility approach offers great potential to assess the potential use of SPAs and respond to the need to develop a practical tool for ecosystem service research. It effectively shows, for example, the areas where the risk of overuse of ecosystem services is increased. Knowing about the regional differences in ecosystem service usage also gives background information for the decision-makers for drawing conclusions about how much and where it is sensible to invest in the maintenance of ecosystem services.  相似文献   

10.
Agroecosystems contain complex networks of interacting organisms and these interaction webs are structured by the relative timing of key biological and ecological events. Recent intensification of land management and global changes in climate threaten to desynchronize the temporal structure of interaction webs and disrupt the provisioning of ecosystem services, such as biological control by natural enemies. It is therefore critical to recognize the central role of temporal dynamics in driving predator–prey interactions in agroecosystems. Specifically, ecological dynamics in crop fields routinely behave as periodic oscillations, or cycles. Familiar examples include phenological cycles, diel activity rhythms, and crop-management cycles. The relative timing and the degree of overlap among ecological cycles determine the nature and magnitude of the ecological interactions among organisms, and ultimately determine whether ecosystem services, such as biological control, can be provided. Additionally, the ecological dynamics in many cropping systems are characterized by a pattern of frequent disturbances due to management actions such as harvest, sowing and pesticide applications. These disturbance cycles cause agroecosystems to be dominated by dispersal and repopulation dynamics. However, they also serve as selective filters that regulate which animals can persist in agroecosystems over larger temporal scales. Here, we review key concepts and examples from the literature on temporal dynamics in ecological systems, and provide a framework to guide biological control strategies for sustainable pest management in a changing world.  相似文献   

11.
Assessing the condition of an ecosystem to ascertain its health presupposes that we can diagnose pathological states in system measures. Frequently this means comparing current conditions to reference states, either historical or other sites, which also exhibit some natural range of variation. In the Fraser River, a 9th order river on the west coast of Canada, and one of the most productive salmon rivers in the world. we have studied assemblages of fish and benthos to assess ecosystem health. The biggest challenge to using species composition and abundance measures as indicators of system condition is the absence of appropriate reference conditions in many instances. There are few unperturbed rivers of large size in western North America, and indeed in much of the world, with which to compare the Fraser River or any other large river ecosystem. Multiple insults from point and non-point sources make it difficult to isolate factors from natural longitudinal changes in terms of their effects on river biota. Potential solutions include analysis of fragmentary historical data, making comparisons with other large rivers, and conducting extensive surveys within the basin to account for spatial gradients. An absolute diagnosis of ecosystem health of large rivers in natural science terms is unlikely, and otherwise will depend on relative changes through time assuming these can be isolated from natural variation and local effects. Definition of health for large, riverine ecosystems remains largely a case of expert opinion and weight of evidence rather than a testable hypothesis.  相似文献   

12.
Shallow lakes have become the archetypical example of ecosystems with alternative stable states. However, since the early conception of that theory, the image of ecosystem stability has been elaborated for shallow lakes far beyond the simple original model. After discussing how spatial heterogeneity and fluctuation of environmental conditions may affect the stability of lakes, we review work demonstrating that the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too. We then show how the image of just two contrasting states has been elaborated. Different groups of primary producers may dominate shallow lakes, and such states dominated by a particular group may often represent alternative stable states. In tropical lakes, or small stagnant temperate waters, free-floating plants may represent an alternative stable state. Temperate shallow lakes may be dominated alternatively by charophytes, submerged angiosperms, green algae or cyanobacteria. The change of the lake communities along a gradient of eutrophication may therefore be seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species. The originally identified shift between a clear and a turbid state remains one of the more dramatic examples, but is surely not the only discontinuity that can be observed in the response of these ecosystems to environmental change.  相似文献   

13.
People depend on benefits provided by ecological systems. Understanding how these ecosystem services – and the ecosystem properties underpinning them – respond to drivers of change is therefore an urgent priority. We address this challenge through developing a novel risk‐assessment framework that integrates ecological and evolutionary perspectives on functional traits to determine species’ effects on ecosystems and their tolerance of environmental changes. We define Specific Effect Function (SEF) as the per‐gram or per capita capacity of a species to affect an ecosystem property, and Specific Response Function (SRF) as the ability of a species to maintain or enhance its population as the environment changes. Our risk assessment is based on the idea that the security of ecosystem services depends on how effects (SEFs) and tolerances (SRFs) of organisms – which both depend on combinations of functional traits – correlate across species and how they are arranged on the species’ phylogeny. Four extreme situations are theoretically possible, from minimum concern when SEF and SRF are neither correlated nor show a phylogenetic signal, to maximum concern when they are negatively correlated (i.e., the most important species are the least tolerant) and phylogenetically patterned (lacking independent backup). We illustrate the assessment with five case studies, involving both plant and animal examples. However, the extent to which the frequency of the four plausible outcomes, or their intermediates, apply more widely in real‐world ecological systems is an open question that needs empirical evidence, and suggests a research agenda at the interface of evolutionary biology and ecosystem ecology.  相似文献   

14.
A direct relationship between ecosystem structure and function has been widely accepted by restoration ecologists. According to this paradigm, ecosystem degradation and aggradation represent parallel changes in structure and function, restoration following the same path as spontaneous succession. But the existence of single bidirectional trajectories and endpoints is not supported by empirical evidence. On the contrary, multiple meta-stable states, irreversible changes and hysteresis are common in nature. These situations are better described by state-and-transition models. Merging those models into the structure–function framework may help to develop new hypotheses on ecosystem dynamics, and may provide a suitable framework for planning restoration activities. We use the relationship between ecosystem function and the effort needed to restore a degraded ecosystem (i.e. restorability) as an example. A linear relationship between ecosystem structure and function suggests that ecosystem degradation and restorability are directly related. This may not be true when multiple states, not necessarily connected, are considered. We show two case studies that support this point, and discuss the implications of the incorporation of state-and-transition models into the structure–function framework on relevant topics of restoration ecology and conservation biology, such as the choice of reference ecosystems, the evaluation of restoration actions, and the identification of priority areas for conservation and restoration.  相似文献   

15.
Soil microbial diversity and the sustainability of agricultural soils   总被引:72,自引:1,他引:71  
Many world ecosystems are in various states of decline evidenced by erosion, low productivity, and poor water quality caused by forest clearing, intensive agricultural production, and continued use of land resources for purposes that are not sustainable. The biological diversity of these systems is being altered. Little research has been conducted to quantify the beneficial relationships between microbial diversity, soil and plant quality, and ecosystem sustainability. Ecosystem functioning is governed largely by soil microbial dynamics. Differences in microbial properties and activities of soils have been reported but are restricted to general ecological enumeration methods or activity levels, which are limited in their ability to describe a particular ecosystem. Microbial populations and their responses to stresses have been traditionally studied at the process level, in terms of total numbers of microorganisms, biomass, respiration rates, and enzyme activities, with little attention being paid to responses at the community or the organismal levels. These process level measurements, although critical to understanding the ecosystem, may be insensitive to community level changes due to the redundancy of these functions. As microbial communities comprise complex interactions between diverse organisms, they should be studied as such, and not as a black box into which inputs are entered and outputs are received at measured rates. Microbial communities and their processes need to be examined in relation to not only the individuals that comprise the community, but the effect of perturbations or environmental stresses on those communities.  相似文献   

16.
海藻场生态系统及其工程学研究进展   总被引:13,自引:0,他引:13  
海藻场生态系统是典型近岸生态系统之一,其独特的结构和功能使其生态系统生态学研究及其工程学研究在近年来日益引起国际学术界关注.本文着重介绍了海藻场生态系统的概念、基本结构、生态功能及其生态工程的概念与基本实施步骤等,并以美国、日本为例,介绍了发达国家的海藻场生态工程的研究与实践现状.结合我国现已开展的海藻场生态系统生态学的相关研究,呼吁我国尽快组织开展相关的基础研究,以期尽快发挥海藻场生态工程对我国海洋经济与科技发展的积极作用.  相似文献   

17.
Ecosystem resilience is the inherent ability to absorb various disturbances and reorganize while undergoing state changes to maintain critical functions. When ecosystem resilience is sufficiently degraded by disturbances, ecosystem is exposed at high risk of shifting from a desirable state to an undesirable state. Ecological thresholds represent the points where even small changes in environmental conditions associated with disturbances lead to switch between ecosystem states. There is a growing body of empirical evidence for such state transitions caused by anthropogenic disturbances in a variety of ecosystems. However, fewer studies addressed the interaction of anthropogenic and natural disturbances that often force an ecosystem to cross a threshold which an anthropogenic disturbance or a natural disturbance alone would not have achieved. This fact highlights how little is known about ecosystem dynamics under uncertainties around multiple and stochastic disturbances. Here, we present two perspectives for providing a predictive scientific basis to the management and conservation of ecosystems against multiple and stochastic disturbances. The first is management of predictable anthropogenic disturbances to maintain a sufficient level of biodiversity for ensuring ecosystem resilience (i.e., resilience-based management). Several biological diversity elements appear to confer ecosystem resilience, such as functional redundancy, response diversity, a dominant species, a foundation species, or a keystone species. The greatest research challenge is to identify key elements of biodiversity conferring ecosystem resilience for each context and to examine how we can manage and conserve them. The second is the identification of ecological thresholds along existing or experimental disturbance gradients. This will facilitate the development of indicators of proximity to thresholds as well as the understanding of threshold mechanisms. The implementation of forewarning indicators will be critical particularly when resilience-based management fails. The ability to detect an ecological threshold along disturbance gradients should therefore be essential to establish a backstop for preventing the threshold from being crossed. These perspectives can take us beyond simply invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical solutions to cope with uncertainties and ecological surprises in a changing world.  相似文献   

18.
In a rapidly changing world, quantifying ecosystem resilience is an important challenge. Historically, resilience has been defined via models that do not take spatial effects into account. These systems can only adapt via uniform adjustments. In reality, however, the response is not necessarily uniform, and can lead to the formation of (self‐organised) spatial patterns – typically localised vegetation patches. Classical measures of resilience cannot capture the emerging dynamics in spatially self‐organised systems, including transitions between patterned states that have limited impact on ecosystem structure and productivity. We present a framework of interlinked phase portraits that appropriately quantifies the resilience of patterned states, which depends on the number of patches, the distances between them and environmental conditions. We show how classical resilience concepts fail to distinguish between small and large pattern transitions, and find that the variance in interpatch distances provides a suitable indicator for the type of imminent transition. Subsequently, we describe the dependency of ecosystem degradation based on the rate of climatic change: slow change leads to sporadic, large transitions, whereas fast change causes a rapid sequence of smaller transitions. Finally, we discuss how pre‐emptive removal of patches can minimise productivity losses during pattern transitions, constituting a viable conservation strategy.  相似文献   

19.
The invasion of Nile perch into Lake Victoria is one of the iconic examples of the destructive effect of an introduced species on an ecosystem but no convincing explanation exists of why Nile perch only increased dramatically after a 25 year lag. Here, we consider this problem using a mathematical model that takes into account interactions between Nile perch and its cichlid prey. We examined competing hypotheses to explain Nile perch invasion and show that suppression of juvenile Nile perch by cichlids may cause the system to have two alternative stable states: one with only cichlids and one with coexistence of cichlids and Nile perch. Without cichlid predation on Nile perch, alternative stable states did not occur. Our analysis indicates that cichlid mortality, for example fishing mortality, may have induced the observed shift between the states.  相似文献   

20.
Abstract Seagrasses are threatened by human activity in many locations around the world. Their decline is often characterized by sudden ecosystem collapse from a vegetated to a bare state. In the 1930s, such a dramatic event happened in the Dutch Wadden Sea. Before the shift, large seagrass beds (Zostera marina) were present in this area. After the construction of a large dam and an incidence of the “wasting disease” in the early 1930s, these meadows became virtually extinct and never recovered despite restoration attempts. We investigated whether this shift could be explained as a critical transition between alternative stable states, and whether the lack of recovery could be due to the high resilience of the new turbid state. We analyzed the depth distribution of the historical meadows, a long-term dataset of key factors determining turbidity and a minimal model based on these data. Results demonstrate that recovery was impossible because turbidity related to suspended sediment was too high, probably because turbidity was no longer reduced by seagrass itself. Model simulations on the positive feedback suggest indeed the robust occurrence of alternative stable states and a high resilience of the current turbid state. As positive feedbacks are common in seagrasses, our findings may explain both the worldwide observed collapses and the low success rate of restoration attempts of seagrass habitats. Therefore, appreciation of ecosystem resilience may be crucial in seagrass ecosystem management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号