首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeted sequencing is a cost-efficient way to obtain answers to biological questions in many projects, but the choice of the enrichment method to use can be difficult. In this study we compared two hybridization methods for target enrichment for massively parallel sequencing and single nucleotide polymorphism (SNP) discovery, namely Nimblegen sequence capture arrays and the SureSelect liquid-based hybrid capture system. We prepared sequencing libraries from three HapMap samples using both methods, sequenced the libraries on the Illumina Genome Analyzer, mapped the sequencing reads back to the genome, and called variants in the sequences. 74-75% of the sequence reads originated from the targeted region in the SureSelect libraries and 41-67% in the Nimblegen libraries. We could sequence up to 99.9% and 99.5% of the regions targeted by capture probes from the SureSelect libraries and from the Nimblegen libraries, respectively. The Nimblegen probes covered 0.6 Mb more of the original 3.1 Mb target region than the SureSelect probes. In each sample, we called more SNPs and detected more novel SNPs from the libraries that were prepared using the Nimblegen method. Thus the Nimblegen method gave better results when judged by the number of SNPs called, but this came at the cost of more over-sampling.  相似文献   

2.
Contemporary genetic studies frequently involve sequencing of a targeted gene panel, for instance consisting of a set of genes associated with a specific disease. The NimbleGen SeqCap EZ Choice kit is commonly used for the targeted enrichment of sequencing libraries comprising a target size up to 7 Mb. A major drawback of this commercially available method is the exclusive use of single-indexing, meaning that at most 24 samples can be multiplexed in a single reaction. In case of relatively small target sizes, this will lead to excessive amounts of data per sample. We present an extended version of the NimbleGen SeqCap EZ protocol which allows to robustly multiplex up to 96 samples. We achieved this by incorporating Illumina dual-indexing based custom adapters into the original protocol. To further extend the optimization of cost-efficient sequencing of custom target panels, we studied the effect of higher pre-enrichment pooling factors and show that pre-enrichment pooling of up to 12 samples does not affect the quality of the data. To facilitate evaluation of capture efficiency in custom design panels, we also provide a detailed reporting tool.  相似文献   

3.
The unprecedented increase in the throughput of DNA sequencing driven by next-generation technologies now allows efficient analysis of the complete protein-coding regions of genomes (exomes) for multiple samples in a single sequencing run. However, sample preparation and targeted enrichment of multiple samples has become a rate-limiting and costly step in high-throughput genetic analysis. Here we present an efficient protocol for parallel library preparation and targeted enrichment of pooled multiplexed bar-coded samples. The procedure is compatible with microarray-based and solution-based capture approaches. The high flexibility of this method allows multiplexing of 3-5 samples for whole-exome experiments, 20 samples for targeted footprints of 5 Mb and 96 samples for targeted footprints of 0.4 Mb. From library preparation to post-enrichment amplification, including hybridization time, the protocol takes 5-6 d for array-based enrichment and 3-4 d for solution-based enrichment. Our method provides a cost-effective approach for a broad range of applications, including targeted resequencing of large sample collections (e.g., follow-up genome-wide association studies), and whole-exome or custom mini-genome sequencing projects. This protocol gives details for a single-tube procedure, but scaling to a manual or automated 96-well plate format is possible and discussed.  相似文献   

4.
DNA methylation is one of the most important epigenetic alterations involved in the control of gene expression. Bisulfite sequencing of genomic DNA is currently the only method to study DNA methylation patterns at single-nucleotide resolution. Hence, next-generation sequencing of bisulfite-converted DNA is the method of choice to investigate DNA methylation profiles at the genome-wide scale. Nevertheless, whole genome sequencing for analysis of human methylomes is expensive, and a method for targeted gene analysis would provide a good alternative in many cases where the primary interest is restricted to a set of genes.Here, we report the successful use of a custom Agilent SureSelect Target Enrichment system for the hybrid capture of bisulfite-converted DNA. We prepared bisulfite-converted next-generation sequencing libraries, which are enriched for the coding and regulatory regions of 174 ADME genes (i.e. genes involved in the metabolism and distribution of drugs). Sequencing of these libraries on Illumina’s HiSeq2000 revealed that the method allows a reliable quantification of methylation levels of CpG sites in the selected genes, and validation of the method using pyrosequencing and the Illumina 450K methylation BeadChips revealed good concordance.  相似文献   

5.
Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062–147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217–73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.  相似文献   

6.
7.
Next‐generation sequencing (NGS) is emerging as an efficient and cost‐effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi‐genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross‐species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low‐coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species‐level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles.  相似文献   

8.
We characterize and extend a highly efficient method for constructing shotgun fragment libraries in which transposase catalyzes in vitro DNA fragmentation and adaptor incorporation simultaneously. We apply this method to sequencing a human genome and find that coverage biases are comparable to those of conventional protocols. We also extend its capabilities by developing protocols for sub-nanogram library construction, exome capture from 50 ng of input DNA, PCR-free and colony PCR library construction, and 96-plex sample indexing.  相似文献   

9.
The proliferation of genomic sequencing approaches has significantly impacted the field of phylogenetics. Target capture approaches provide a cost-effective, fast and easily applied strategy for phylogenetic inference of non-model organisms. However, several existing target capture processing pipelines are incapable of incorporating whole genome sequencing (WGS). Here, we develop a new pipeline for capture and de novo assembly of the targeted regions using whole genome re-sequencing reads. This new pipeline captured targeted loci accurately, and given its unbiased nature, can be used with any target capture probe set. Moreover, due to its low computational demand, this new pipeline may be ideal for users with limited resources and when high-coverage sequencing outputs are required. We demonstrate the utility of our approach by incorporating WGS data into the first comprehensive phylogenomic reconstruction of the freshwater mussel family Margaritiferidae. We also provide a catalogue of well-curated functional annotations of these previously uncharacterized freshwater mussel-specific target regions, representing a complementary tool for scrutinizing phylogenetic inferences while expanding future applications of the probe set.  相似文献   

10.
Next generation DNA sequencing (NGS) technologies have revolutionized the pace at which whole genome and exome sequences can be generated. However, despite these advances, many of the methods for targeted resequencing, such as the generation of high-depth exome sequences, are somewhat limited by the relatively large amounts of starting DNA that are normally required. In the case of tumour analysis this is particularly pertinent as many tumour biopsies often return submicrogram quantities of DNA, especially when tumours are microdissected prior to analysis. Here, we present a method for exome capture and resequencing using as little as 50 ng of starting DNA. The sequencing libraries generated by this minimal starting amount (MSA-Cap) method generate datasets that are comparable to standard amount (SA) whole exome libraries that use three micrograms of starting DNA. This method, which can be performed in most laboratories using commonly available reagents, has the potential to enhance large scale profiling efforts such as the resequencing of tumour exomes.  相似文献   

11.
We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies.  相似文献   

12.
13.
14.
Highly abundant microRNAs (miRNAs) in small RNA sequencing libraries make it difficult to obtain efficient measurements of more lowly expressed species. We present a new method that allows for the selective blocking of specific, abundant miRNAs during preparation of sequencing libraries. This technique is specific with little off-target effects and has no impact on the reproducibility of the measurement of non-targeted species. In human plasma samples, we demonstrate that blocking of highly abundant hsa-miR-16–5p leads to improved detection of lowly expressed miRNAs and more precise measurement of differential expression overall. Furthermore, we establish the ability to target a second abundant miRNA and to multiplex the blocking of two miRNAs simultaneously. For small RNA sequencing, this technique could fill a similar role as do ribosomal or globin removal technologies in messenger RNA sequencing.  相似文献   

15.

Background

In plant breeding, there are two primary applications for DNA markers in selection: 1) selection of known genes using a single marker assay (marker-assisted selection; MAS); and 2) whole-genome profiling and prediction (genomic selection; GS). Typically, marker platforms have addressed only one of these objectives.

Results

We have developed spiked genotyping-by-sequencing (sGBS), which combines targeted amplicon sequencing with reduced representation genotyping-by-sequencing. To minimize the cost of targeted assays, we utilize a small percent of sequencing capacity available in runs of GBS libraries to “spike” amplified targets of a priori alleles tagged with a different set of unique barcodes. This open platform allows multiple, single-target loci to be assayed while simultaneously generating a whole-genome profile. This dual-genotyping approach allows different sets of samples to be evaluated for single markers or whole genome-profiling. Here, we report the application of sGBS on a winter wheat panel that was screened for converted KASP markers and newly-designed markers targeting known polymorphisms in the leaf rust resistance gene Lr34.

Conclusions

The flexibility and low-cost of sGBS will enable a range of applications across genetics research. Specifically in breeding applications, the sGBS approach will allow breeders to obtain a whole-genome profile of important individuals while simultaneously targeting specific genes for a range of selection strategies across the breeding program.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1404-9) contains supplementary material, which is available to authorized users.  相似文献   

16.
Enriching target sequences in sequencing libraries via capture hybridization to bait/probes is an efficient means of leveraging the capabilities of next-generation sequencing for obtaining sequence data from target regions of interest. However, homologous sequences from non-target regions may also be enriched by such methods. Here we investigate the fidelity of capture enrichment for complete mitochondrial DNA (mtDNA) genome sequencing by analyzing sequence data for nuclear copies of mtDNA (NUMTs). Using capture-enriched sequencing data from a mitochondria-free cell line and the parental cell line, and from samples previously sequenced from long-range PCR products, we demonstrate that NUMT alleles are indeed present in capture-enriched sequence data, but at low enough levels to not influence calling the authentic mtDNA genome sequence. However, distinguishing NUMT alleles from true low-level mutations (e.g. heteroplasmy) is more challenging. We develop here a computational method to distinguish NUMT alleles from heteroplasmies, using sequence data from artificial mixtures to optimize the method.  相似文献   

17.
Current methods for detection of copy number variants (CNV) and aberrations (CNA) from targeted sequencing data are based on the depth of coverage of captured exons. Accurate CNA determination is complicated by uneven genomic distribution and non-uniform capture efficiency of targeted exons. Here we present CopywriteR, which eludes these problems by exploiting ‘off-target’ sequence reads. CopywriteR allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. CopywriteR outperforms existing methods and constitutes a widely applicable alternative to available tools.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0617-1) contains supplementary material, which is available to authorized users.  相似文献   

18.
Current target enrichment systems for large-scale next-generation sequencing typically require synthetic oligonucleotides used as capture reagents to isolate sequences of interest. The majority of target enrichment reagents are focused on gene coding regions or promoters en masse. Here we introduce development of a customizable targeted capture system using biotinylated RNA probe baits transcribed from sheared bacterial artificial chromosome clone templates that enables capture of large, contiguous blocks of the genome for sequencing applications. This clone adapted template capture hybridization sequencing (CATCH-Seq) procedure can be used to capture both coding and non-coding regions of a gene, and resolve the boundaries of copy number variations within a genomic target site. Furthermore, libraries constructed with methylated adapters prior to solution hybridization also enable targeted bisulfite sequencing. We applied CATCH-Seq to diverse targets ranging in size from 125 kb to 3.5 Mb. Our approach provides a simple and cost effective alternative to other capture platforms because of template-based, enzymatic probe synthesis and the lack of oligonucleotide design costs. Given its similarity in procedure, CATCH-Seq can also be performed in parallel with commercial systems.  相似文献   

19.
Highly complex and dynamic protein mixtures are hardly comprehensively resolved by direct shotgun proteomic analysis. As many proteins of biological interest are of low abundance, numerous analytical methodologies have been developed to reduce sample complexity and go deeper into proteomes. The present work describes an analytical strategy to perform cysteinyl-peptide subset enrichment and relative quantification through successive cysteine and amine-isobaric tagging. A cysteine-reactive covalent capture tag (C3T) allowed derivatization of cysteines and specific isolation on a covalent capture (CC) resin. The 6-plex amine-reactive tandem mass tags (TMT) served for relative quantification of the targeted peptides. The strategy was first evaluated on a model protein mixture with increasing concentrations to assess the specificity of the enrichment and the quantitative performances of the workflow. It was then applied to human cerebrospinal fluid (CSF) from post-mortem and ante-mortem samples. These studies confirmed the specificity of the C3T and the CC technique to cysteine-containing peptides. The model protein mixture analysis showed high precision and accuracy of the quantification with coefficients of variation and mean absolute errors of less than 10% on average. The CSF experiments demonstrated the potential of the strategy to study complex biological samples and identify differential brain-related proteins. In addition, the quantification data were highly correlated with a classical TMT experiment (i.e., without C3T cysteine-tagging and enrichment steps). Altogether, these results legitimate the use of this quantitative C3T strategy to enrich and relatively quantify cysteine-containing peptides in complex mixtures.  相似文献   

20.

Background

Target enrichment and resequencing is a widely used approach for identification of cancer genes and genetic variants associated with diseases. Although cost effective compared to whole genome sequencing, analysis of many samples constitutes a significant cost, which could be reduced by pooling samples before capture. Another limitation to the number of cancer samples that can be analyzed is often the amount of available tumor DNA. We evaluated the performance of whole genome amplified DNA and the power to detect subclonal somatic single nucleotide variants in non-indexed pools of cancer samples using the HaloPlex technology for target enrichment and next generation sequencing.

Results

We captured a set of 1528 putative somatic single nucleotide variants and germline SNPs, which were identified by whole genome sequencing, with the HaloPlex technology and sequenced to a depth of 792–1752. We found that the allele fractions of the analyzed variants are well preserved during whole genome amplification and that capture specificity or variant calling is not affected. We detected a large majority of the known single nucleotide variants present uniquely in one sample with allele fractions as low as 0.1 in non-indexed pools of up to ten samples. We also identified and experimentally validated six novel variants in the samples included in the pools.

Conclusion

Our work demonstrates that whole genome amplified DNA can be used for target enrichment equally well as genomic DNA and that accurate variant detection is possible in non-indexed pools of cancer samples. These findings show that analysis of a large number of samples is feasible at low cost, even when only small amounts of DNA is available, and thereby significantly increases the chances of indentifying recurrent mutations in cancer samples.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-856) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号