共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Background and Aims
Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors.Methods
We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA).Key Results
Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions.Conclusions
The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. 相似文献3.
4.
Tsai CH Singh P Chen CW Thomas J Weber J Mauch-Mani B Zimmerli L 《The Plant journal : for cell and molecular biology》2011,65(3):469-479
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses. 相似文献
5.
6.
A herbivore that manipulates plant defence 总被引:1,自引:0,他引:1
Sarmento RA Lemos F Bleeker PM Schuurink RC Pallini A Oliveira MG Lima ER Kant M Sabelis MW Janssen A 《Ecology letters》2011,14(3):229-236
Phytopathogens and herbivores induce plant defences. Whereas there is evidence that some pathogens suppress these defences by interfering with signalling pathways involved in the defence, such evidence is scarce for herbivores. We found that the invasive spider mite Tetranychus evansi suppresses the induction of the salicylic acid and jasmonic acid signalling routes involved in induced plant defences in tomato. This was reflected in the levels of inducible defence compounds, such as proteinase inhibitors, which in mite-infested plants were reduced to even lower levels than the constitutive levels in herbivore-free plants. Additionally, the spider mite suppressed the release of inducible volatiles, which are implicated in plant defence. Consequently, the mites performed much better on previously attacked plants than on non-attacked plants. These findings provide a new perspective on plant-herbivore interactions, plant protection and plant resistance to invasive species. 相似文献
7.
The proliferating cell nuclear antigen (PCNA) is a key component of the eukaryotic DNA replication machinery. It also plays an important role in DNA repair mechanisms. Despite the intense scientific research on yeast and human PCNA, information describing the function of this protein in plants is still very limited. In the previous study Arabidopsis PCNA2 but not PCNA1 was proposed to be functionally important in DNA polymerase η-dependent postreplication repair. In addition to the above study, PCNA2 but not PCNA1 was also shown to be necessary for Arabidopsis DNA polymerase λ-dependent oxidative DNA damage bypass. Taking into account the reported differences between PCNA1 and PCNA2, we tested the idea of a possible cooperation between PCNA1 and PCNA2 in the plant cell. In a bimolecular fluorescence complementation assay an interaction between PCNA1 and PCNA2 was observed in the nucleus, as well as in the cytoplasm. This finding, together with our previous results, indicates that PCNA1 and PCNA2 may cooperate in planta by forming homo- and heterotrimeric rings. The observed interaction might be relevant when distinct functions for PCNA1 and PCNA2 are considered. 相似文献
8.
Cellular redox state is regulated by numerous components. The thiol-disulfide compound, glutathione, is considered to be one of the most significant, owing to its antioxidant power and potential influence over protein structure and function. While signaling roles for glutathione in plants have been suggested for several years, hard proof is scarce. Recently, through an approach based on genetic manipulation of glutathione in an oxidative stress background, we reported evidence that glutathione status is important to allow intracellular oxidation to activate pathogenesis-related phytohormone signaling pathways. This effect does not seem to be caused by changes in glutathione antioxidant capacity, and appears to be distinct to regulation through known players in pathogenesis responses, such as NPR1. Our data therefore suggest that new glutathione-dependent components that link oxidative stress to response outputs await discovery. 相似文献
9.
Plants under attack by pathogens and pests can mount a range of inducible defences, encompassing both chemical and structural changes. Although few reports exist, it appears that plants responding to pathogen or herbivore attack, or chemical defence elicitors, may produce progeny that are better able to defend themselves against attack, compared with progeny from unthreatened or untreated plants. To date, all research on transgenerational effects of biotic stress has been conducted on dicotyledenous plants. We examined the possibility that resistance induced by application of chemical defence elicitors to the monocot plant barley, could be passed on to the progeny. Plants were treated with acibenzolar-S-methyl (ASM) or saccharin, and grain harvested at maturity. Germination was unaffected in seed collected from plants treated with saccharin, while germination was reduced significantly in seed collected from ASM-treated plants. The subsequent growth of the seedlings was not significantly different in any of the treatments. However, plants from parents treated with both ASM or saccharin exhibited significantly enhanced resistance to infection by Rhynchosporium commune, despite not being treated with elicitor themselves. These data hint at the possibility of producing disease-resistant plants by exposing parent plants to chemical elicitors. 相似文献
10.
11.
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population‐level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation‐sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation‐based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered. 相似文献
12.
Arthur Gilly Mathilde Etcheverry Mohammed-Amin Madoui Julie Guy Leandro Quadrana Adriana Alberti Antoine Martin Tony Heitkam Stefan Engelen Karine Labadie Jeremie Le Pen Patrick Wincker Vincent Colot Jean-Marc Aury 《BMC bioinformatics》2014,15(1)
Background
Transposable elements (TEs) are DNA sequences that are able to move from their location in the genome by cutting or copying themselves to another locus. As such, they are increasingly recognized as impacting all aspects of genome function. With the dramatic reduction in cost of DNA sequencing, it is now possible to resequence whole genomes in order to systematically characterize novel TE mobilization in a particular individual. However, this task is made difficult by the inherently repetitive nature of TE sequences, which in some eukaryotes compose over half of the genome sequence. Currently, only a few software tools dedicated to the detection of TE mobilization using next-generation-sequencing are described in the literature. They often target specific TEs for which annotation is available, and are only able to identify families of closely related TEs, rather than individual elements.Results
We present TE-Tracker, a general and accurate computational method for the de-novo detection of germ line TE mobilization from re-sequenced genomes, as well as the identification of both their source and destination sequences. We compare our method with the two classes of existing software: specialized TE-detection tools and generic structural variant (SV) detection tools. We show that TE-Tracker, while working independently of any prior annotation, bridges the gap between these two approaches in terms of detection power. Indeed, its positive predictive value (PPV) is comparable to that of dedicated TE software while its sensitivity is typical of a generic SV detection tool. TE-Tracker demonstrates the benefit of adopting an annotation-independent, de novo approach for the detection of TE mobilization events. We use TE-Tracker to provide a comprehensive view of transposition events induced by loss of DNA methylation in Arabidopsis. TE-Tracker is freely available at http://www.genoscope.cns.fr/TE-Tracker.Conclusions
We show that TE-Tracker accurately detects both the source and destination of novel transposition events in re-sequenced genomes. Moreover, TE-Tracker is able to detect all potential donor sequences for a given insertion, and can identify the correct one among them. Furthermore, TE-Tracker produces significantly fewer false positives than common SV detection programs, thus greatly facilitating the detection and analysis of TE mobilization events.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-014-0377-z) contains supplementary material, which is available to authorized users. 相似文献13.
Role of salicylic acid glucosyltransferase in balancing growth and defence for optimum plant fitness
Yudai Kobayashi Noriho Fukuzawa Ayaka Hyodo Hangil Kim Shota Mashiyama Tsuyoshi Ogihara Hirofumi Yoshioka Hideyuki Matsuura Chikara Masuta Takeshi Matsumura Minoru Takeshita 《Molecular Plant Pathology》2020,21(3):429-442
14.
Juliane Kuhtz Eberhard Schneider Nady El Hajj Lena Zimmermann Olga Fust Bartosz Linek Rudolf Seufert Thomas Hahn Martin Schorsch Thomas Haaf 《Epigenetics》2014,9(12):1648-1658
The molecular basis of male infertility is poorly understood, the majority of cases remaining unsolved. The association of aberrant sperm DNA methylation patterns and compromised semen parameters suggests that disturbances in male germline epigenetic reprogramming contribute to this problem. So far there are only few data on the epigenetic heterogeneity of sperm within a given sample and how to select the best sperm for successful infertility treatment. Limiting dilution bisulfite sequencing of small pools of sperm from fertile donors did not reveal significant differences in the occurrence of abnormal methylation imprints between sperm with and without morphological abnormalities. Intracytoplasmic morphologically selected sperm injection was not associated with an improved epigenetic quality, compared to standard intracytoplasmatic sperm injection. Deep bisulfite sequencing (DBS) of 2 imprinted and 2 pluripotency genes in sperm from men attending a fertility center showed that in both samples with normozoospermia and oligoasthenoteratozoospermia (OAT) the vast majority of sperm alleles was normally (de)methylated and the percentage of epimutations (allele methylation errors) was generally low (<1%). However, DBS allowed one to identify and quantify these rare epimutations with high accuracy. Sperm samples not leading to a pregnancy, in particular in the OAT group, had significantly more epimutations in the paternally methylated GTL2 gene than samples leading to a live birth. All 13 normozoospermic and 13 OAT samples leading to a child had <1% GTL2 epimutations, whereas one (7%) of 14 normozoospermic and 7 (50%) of 14 OAT samples without pregnancy displayed 1–14% GTL2 epimutations. 相似文献
15.
Induced systemic resistance (ISR) against pathogens in the context of induced plant defences 总被引:9,自引:0,他引:9
Induced systemic resistance (ISR) of plants against pathogens is a widespread phenomenon that has been intensively investigated with respect to the underlying signalling pathways as well as to its potential use in plant protection. Elicited by a local infection, plants respond with a salicylic-dependent signalling cascade that leads to the systemic expression of a broad spectrum and long-lasting disease resistance that is efficient against fungi, bacteria and viruses. Changes in cell wall composition, de novo production of pathogenesis-related-proteins such as chitinases and glucanases, and synthesis of phytoalexins are associated with resistance, although further defensive compounds are likely to exist but remain to be identified. In this Botanical Briefing we focus on interactions between ISR and induced resistance against herbivores that is mediated by jasmonic acid as a central signalling molecule. While many studies report cross-resistance, others have found trade-offs, i.e. inhibition of one resistance pathway by the other. Here we propose a framework that explains many of the thus far contradictory results. We regard elicitation separately from signalling and from production, i.e. the synthesis of defensive compounds. Interactions on all three levels can act independently from each other. 相似文献
16.
17.
Lynda E. Perkins Bronwen W. Cribb Philip B. Brewer Jim Hanan Murray Grant Marta de Torres Myron P. Zalucki 《Proceedings. Biological sciences / The Royal Society》2013,280(1756)
Plants are sessile, so have evolved sensitive ways to detect attacking herbivores and sophisticated strategies to effectively defend themselves. Insect herbivory induces synthesis of the phytohormone jasmonic acid which activates downstream metabolic pathways for various chemical defences such as toxins and digestion inhibitors. Insects are also sophisticated animals, and many have coevolved physiological adaptations that negate this induced plant defence. Insect behaviour has rarely been studied in the context of induced plant defence, although behavioural adaptation to induced plant chemistry may allow insects to bypass the host''s defence system. By visualizing jasmonate-responsive gene expression within whole plants, we uncovered spatial and temporal limits to the systemic spread of plant chemical defence following herbivory. By carefully tracking insect movement, we found induced changes in plant chemistry were detected by generalist Helicoverpa armigera insects which then modified their behaviour in response, moving away from induced parts and staying longer on uninduced parts of the same plant. This study reveals that there are plant-wide signals rapidly generated following herbivory that allow insects to detect the heterogeneity of plant chemical defences. Some insects use these signals to move around the plant, avoiding localized sites of induction and staying ahead of induced toxic metabolites. 相似文献
18.
Patrice Meimoun Guillaume Vidal Anne-Sophie Bohrer Arnaud Lehner Daniel Tran Jo?l Briand Fran?ois Bouteau Jean-Pierre Rona 《Plant signaling & behavior》2009,4(9):830-835
In Arabidopsis thaliana cell suspension,abscisic acid (aBa) induces changes in cytosolic calcium concentration ([Ca2+]cyt) which are the trigger for aBa-induced plasma membrane anion current activation, H+-aTPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca2+ stores in aBa signal transduction through electrophysiological current measurements, cytosolic Ca2+ activity measurements with the apoaequorin Ca2+ reporter protein and external pH measurement. Intracellular Ca2+ stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca2+ release in the cytosol, (2) anion channel activation and H+-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca2+ release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana. U73122相似文献
19.
20.
Peto A Lehotai N Lozano-Juste J León J Tari I Erdei L Kolbert Z 《Annals of botany》2011,108(3):449-457