首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Summary We describe the use of scanning electron microscopy to provide novel views of the three-dimensional morphology of the ingrowth wall in epidermal transfer cells of cotyledons of developingVicia faba seed. Wall ingrowth deposition in these cells amplifies the surface area of plasma membrane available for transport of solutes during cotyledon development. Despite the physiological importance of such amplification, little is known about wall ingrowth morphology and deposition in transfer cells. A detailed morphological analysis of wall deposition in this study clearly established for the first time that wall ingrowths are deposited at scattered, discrete loci as papillate ingrowth projections. The new views of the ingrowth wall revealed that these projections branch and fuse laterally, and fusion occurs by fine connections to form a fenestrated sheet or layer. This sheet of wall material then provides a base for further deposition of ingrowth projections to progressively build many interconnected, fenestrated layers. Consolidation, or filling-in, of the fenestrae in these layers appears to occur from small fingerlike protrusions of wall material which extend laterally from the most recently deposited surface of the fenestrae. We propose that deposition of fenestrated layers may provide a mechanism for maintaining continuous amplification of plasma membrane surface area in the face of turnover of the plasma membrane and transporter proteins associated with it. The techniques reported in this paper will provide new opportunities to investigate wall ingrowth deposition and its regulation in transfer cells.Abbreviations SEM scanning electron microscopy - TEM transmission electron microscopy Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

2.
Summary The epidermal transfer cells in developingVicia faba L. cotyledons are highly polarized. Extensive wall ingrowths occur on their outer periclinal walls and extend part way down both anticlinal walls. This ingrowth development serves to increase the surface area of the plasma membrane and thus maximize porter-dependent uptake of sugars from the seed apoplasm. In contrast, the inner periclinal walls of these transfer cells do not form wall ingrowths. We have commenced a study of the mechanisms responsible for establishing this polarity by first analysing the microtubule (MT) cytoskeleton in developing transfer cells. Thin sections of fixed cotyledons embedded in methacrylate resin were processed for immunofluorescence microscopy using monoclonal anti--tubulin and counterstained with Calcofluor White to visualize wall ingrowths. In epidermal cells of young cotyledons where wall ingrowths were yet to develop, MT labelling was detected around all cortical regions of the cell. However, in cells where wall ingrowths were clearly established, MT labelling was detected almost exclusively in cortical regions adjacent to the wall ingrowths. Little, if any, MT labelling was detected on the anticlinal or inner periclinal walls of these cells. This distribution of MTs was most prominent in cells with well developed wall ingrowths. In these cells, a subpopulation of MTs were also detected emanating from the subcortex and extending towards the wall ingrowth region. The possible role of MT distribution in establishing transfer cell polarity and wall ingrowth formation is discussed.Abbreviations MT microtubule  相似文献   

3.
Summary. Abaxial epidermal cells of developing faba bean (Vicia faba) cotyledons are modified to a transfer cell morphology and function. In contrast, the adaxial epidermal cells do not form transfer cells but can be induced to do so when excised cotyledons are cultured on an agar medium. The first fenestrated layer of wall ingrowths is apparent within 24 h of cotyledon exposure to culture medium. The time course of wall ingrowth formation was examined further. By 2 h following cotyledon excision, a 350 nm thick wall was deposited evenly over the outer periclinal walls of adaxial epidermal cells and densities of cytoplasmic vesicles increased. After 3 h in culture, 10% of epidermal cells contained small projections of wall material on their outer periclinal walls. Thereafter, this percentage rose sharply and reached a maximum of 90% by 15 h. Continuous culture of cotyledons on a medium containing 6-methyl purine (an inhibitor of RNA synthesis) completely blocked wall ingrowth formation. In contrast, if exposure to 6-methyl purine was delayed for 1 h at the start of the culture period, the adaxial epidermal cells were found to contain small wall ingrowths. Treating cotyledons for 1 h with 6-methyl purine at 15 h following cotyledon excision halted further wall ingrowth development. We conclude that transfer cell induction is rapid and that signalling and early events leading to wall ingrowth formation depend upon gene expression. In addition, these gene products have a high turnover rate. Correspondence and reprints: School of Environmental and Life Sciences, Biology Building, University of Newcastle, Callaghan, NSW 2308, Australia.  相似文献   

4.
5.
Background and Aims Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. Methods Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. Key Results Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 μg mL(-1) MCY-LR, accelerated cell cycle at 10 μg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. Conclusions MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.  相似文献   

6.
Czarna M  Jarmuszkiewicz W 《FEBS letters》2005,579(14):3136-3140
Mitochondria of amoeba Acanthamoeba castellanii were used to determine the role of two energy-dissipating systems, i.e., a free fatty acid (FFA)-activated, purine nucleotide-inhibited uncoupling protein (AcUCP) and a FFA-insensitive, purine nucleotide-activated ubiquinol alternative oxidase (AcAOX), in decreasing reactive oxygen species production in unicellular organisms. It is shown that the activation of AcUCP by externally added FFA resulted in a strong decrease in H2O2 production, whilst the inhibition of the FFA acid-induced AcUCP activity by GDP or addition of bovine serum albumin (BSA) enhanced production of H2O2. Similarly, the activation of antimycin-resistant AcAOX-mediated respiration by GMP significantly lowered H2O2 production, while inhibition of the oxidase by benzohydroxamate cancelled the GMP-induced effect on H2O2 production. When active together, both energy-dissipating systems revealed a cumulative effect on decreasing H2O2 formation. The results suggest that protection against mitochondrial oxidative stress may be a physiological role of AOX and UCP in unicellulars, such as A. castellanii.  相似文献   

7.
8.
Balázs Rada 《FEBS letters》2010,584(5):917-881
Hydrogen peroxide production by the NADPH oxidase Duox1 occurs during activation of respiratory epithelial cells stimulated by purified bacterial ligands, such as lipopolysaccharide. Here, we characterize Duox activation using intact bacterial cells of several airway pathogens. We found that only Pseudomonas aeruginosa, not Burkholderia cepacia or Staphylococcus aureus, triggers H2O2 production in bronchial epithelial cells in a calcium-dependent but predominantly ATP-independent manner. Moreover, by comparing mutant Pseudomonas strains, we identify several virulence factors that participate in Duox activation, including the type-three secretion system. These data provide insight on Duox activation by mechanisms unique to P. aeruginosa.  相似文献   

9.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned cDNA encoding SOD activated with copper/zinc (CuZn SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of CuZn SOD was 692 bp and had a 465 bp open reading frame encoding 154 amino acids. The deduced amino acid sequence of B. calyciflorus CuZn SOD showed 63.87%, 60.00%, 59.74% and 48.89% similarity with the CuZn SOD of the Ctenopharyn godonidella, Schistosoma japonicum, Drosophila melanogaster and Caenorhabditis elegans, respectively. The phylogenetic tree constructed based on the amino acid sequences of CuZn SODs from B. calyciflorus and other organisms revealed that rotifer is closely related to nematode. Analysis of the expression of CuZn SOD under different temperatures (15, 30 and 37 °C) revealed that its expression was enhanced 4.2-fold (p < 0.001) at 30 °C after 2 h, however, the lower temperature (15 °C) promoted CuZn SOD transiently (4.1-fold, p < 0.001) and then the expression of CuZn SOD decreased to normal level (p > 0.05). When exposed to H2O2 (0.1 mM), CuZn SOD, manganese superoxide dismutase (Mn SOD) and catalase (CAT) gene were upregulated, and in addition, the mRNA expression of CuZn SOD gene was induced instantaneously after exposure to vitamin E. It indicates that the CuZn SOD gene would be an important gene in response to oxidative and temperature stress.  相似文献   

10.
X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency disease of phagocytes caused by mutations in the cytochrome b(558)β (CYBB) gene. We, for the first time, detected somatic mosaicism in two unrelated male patients with X-CGD caused by de novo nonsense mutations (p.Gly223X and p.Glu462X) in the CYBB gene. In each patient, a small subset of granulocytes was normal in terms of respiratory burst (ROB) activity, gp91(phox) expression, and CYBB sequences. Cells with wild-type CYBB sequence were also detected in buccal swab specimens and in peripheral blood mononuclear cells. The normal cells were shown to be of the patient origin by fluorescent in situ hybridization analysis of X/Y chromosomes, and by HLA DNA typing. Two possible mechanisms for this somatic mosaicism were considered. The first is that the de novo disease-causing mutations in CYBB occurred at an early multicellular stage of embryogenesis with subsequent expansion of the mutated cells, leaving some unmutated cells surviving. The second possibility is that the de novo mutations occurred in oocytes which was followed by reversion of the mutations in a small subset of cells in early embryogenesis.  相似文献   

11.
Intensive and short-term strategies can aid in more rapid screening with informative and reliable results for long-term investigations under cold stress (CS). The integration of cellular analysis of chickpea during 0, 2, 4, 8, and 12 h CS supplied us with novel possible responsive components and the possible interactions embedded inside, still remaining a Maze. Seedlings showed a biphasic pattern of responses over time. The transitory phase happened after 8 h, when cells are presumably experiencing a new stage of responses and setting the stage for long-term adjustments. Physio-biochemical analysis confirmed the direct effect of fatty acids composition, lipoxygenase activity and antioxidant systems in cell responses under CS. Also, proteome results using MALDI-TOF-TOF and/or LC–MS/MS were able to differentiate changes in early phases of CS. Two-dimensional gel analysis results showed the possible targets of CS as mitochondria, chloroplast, organelle–nucleus communications, storage resources, stress and defense, protein degradation and signal transduction that confirmed the cell intended to re-establish a new homeostasis, in energy and primary metabolites to adapt to long-term CS. Here we propose a time course dynamic assessing multi-dimensional approaches for CS studies as one of the first studies in short-term treatment to progressively fill in the gaps between physio-biochemical and molecular events and touch the cell architecture for a better comprehension of the nature of plant stress response.  相似文献   

12.
The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H2O2 generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号