首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.  相似文献   

2.
Hiura H  Komiyama J  Shirai M  Obata Y  Ogawa H  Kono T 《FEBS letters》2007,581(7):1255-1260
Mouse genomes show a large cluster of imprinted genes at the Dlk1-Gtl2 domain in the distal region of chromosome 12. An intergenic-differentially methylated region (IG-DMR) located between Dlk1 and Gtl2 is specifically methylated in the male germline; IG-DMR regulates the parental allele-specific expression of imprinted genes. Here, we show the resetting of IG-DMR methylation marks during male germ-cell differentiation. For parental allele-specific methylation analysis, polymorphisms were detected in a 2.6-kb IG-DMR in three mouse strains. Bisulfite methylation analysis showed erasure of the marks by E14 and re-establishment before birth. The IG-DMR methylation status was maintained in spermatogonia and spermatocytes of mature testes. The IG-DMR methylation status established before birth is thus maintained throughout the lifetime in the male germline.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus.  相似文献   

11.
Genetic imprinting: conflict at the Callipyge locus   总被引:4,自引:0,他引:4  
  相似文献   

12.
13.
14.
The distal part of the mouse Chr 12 contains a cluster of reciprocally imprinted genes. Recently we found a grandparental origin-dependent, transmission-ratio distortion (TRD) in this region. The TRD resulted from postimplantation loss of embryos that inherited the distal Chr 12 alleles from the maternal grandfather. These data suggested that imprinting of one or more genes in this region was not uniformly well established or maintained in all the embryos. To elucidate the mechanism underlying such a variation, we examined the expression of two genes from the distal Chr 12 imprinted region, the maternally expressed gene 3/gene-trap locus 2 ( Meg3/ Gtl2), and the delta-like homolog 1 ( Dlk1) gene. We demonstrated that the Meg3/ Gtl2 gene had two major mRNA forms. One form, Meg3-proximal ( Meg3p), contained exons 1-3. The second form, Meg3-distal ( Meg3d) did not contain exons 1-3 and was present in oocytes and in 1- and 2-cell embryos. We observed cross-dependent and splice form-specific relaxation of imprinting of the Dlk1 and Meg3d, but not Meg3p. Expression patterns of Dlk1 and Meg3/ Gtl2 in embryos from crosses between different mouse strains suggest that 1). imprinting of the Dlk1 and Meg3/ Gtl2 genes is not strictly coordi- nated; 2). parental origin-dependent expression of these genes is under control of a strain-specific, cis-acting modifier located in a 1.5-Mb region that includes the Meg3/ Gtl2-Dlk1 locus. Biallelic expression of Dlk1 and Meg3d did not affect embryo viability and, therefore, cannot be responsible for the lethal phenotypes in UPD12 embryos or for the transmission-ratio distortion.  相似文献   

15.
16.
17.
18.
19.
Genomic imprinting at the mammalian Dlk1-Dio3 domain   总被引:4,自引:0,他引:4  
Genomic imprinting causes genes to be expressed or repressed depending on their parental origin. The majority of imprinted genes identified to date map in clusters and much of our knowledge of the mechanisms, function and evolution of imprinting have emerged from their analysis. The cluster of imprinted genes delineated by the delta-like homolog 1 gene and the type III iodothyronine deiodinase gene (Dlk1-Dio3) is located on distal mouse chromosome 12 and human chromosome 14. Its developmental importance is exemplified by severe phenotypes associated with altered dosage of these genes in mice and humans. The domain contains three imprinted protein-coding genes, Dlk1, Rtl1 and Dio3, expressed from the paternally inherited chromosome and several imprinted large and small noncoding RNA genes expressed from the maternally inherited homolog. Here, we discuss the function and regulation of imprinting at this domain.  相似文献   

20.
The dentate gyrus (DG) of the hippocampus has a central role in learning and memory in adult rodents. The DG is generated soon after birth, although new neurons continue to be generated in the DG throughout life. The proneural factors Mash1 (Ascl1) and neurogenin 2 (Ngn2) are expressed during formation of the DG but their role in the development of this structure has not yet been addressed. Here, we show that Ngn2 is essential for the development of the DG. Ngn2 mutant mice have fewer DG progenitors and these cells present defects in neuronal differentiation. By contrast, the DG is normal in Mash1 mutant mice at birth, and loss of both Mash1 and Ngn2 does not aggravate the defect observed in Ngn2 single mutants. These data establish a unique role of Ngn2 in DG neurogenesis during development and raise the possibility that Ngn2 has a similar function in adult neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号