首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human Proliferating Cellular Nuclear Antigen (hPCNA), a member of the sliding clamp family of proteins, makes specific protein-protein interactions with DNA replication and repair proteins through a small peptide motif termed the PCNA-interacting protein, or PIP-box. We solved the structure of hPCNA bound to PIP-box-containing peptides from the p66 subunit of the human replicative DNA polymerase-delta (452-466) at 2.6 A and of the flap endonuclease (FEN1) (331-350) at 1.85 A resolution. Both structures demonstrate that the pol-delta p66 and FEN1 peptides interact with hPCNA at the same site shown to bind the cdk-inhibitor p21(CIP1). Binding studies indicate that peptides from the p66 subunit of the pol-delta holoenzyme and FEN1 bind hPCNA from 189- to 725-fold less tightly than those of p21. Thus, the PIP-box and flanking regions provide a small docking peptide whose affinities can be readily adjusted in accord with biological necessity to mediate the binding of DNA replication and repair proteins to hPCNA.  相似文献   

2.
We have discovered that 3,3′,5-triiodothyronine (T3) inhibits binding of a PIP-box sequence peptide to proliferating cell nuclear antigen (PCNA) protein by competing for the same binding site, as evidenced by the co-crystal structure of the PCNA-T3 complex at 2.1 Å resolution. Based on this observation, we have designed a novel, non-peptide small molecule PCNA inhibitor, T2 amino alcohol (T2AA), a T3 derivative that lacks thyroid hormone activity. T2AA inhibited interaction of PCNA/PIP-box peptide with an IC50 of ∼1 μm and also PCNA and full-length p21 protein, the tightest PCNA ligand protein known to date. T2AA abolished interaction of PCNA and DNA polymerase δ in cellular chromatin. De novo DNA synthesis was inhibited by T2AA, and the cells were arrested in S-phase. T2AA inhibited growth of cancer cells with induction of early apoptosis. Concurrently, Chk1 and RPA32 in the chromatin are phosphorylated, suggesting that T2AA causes DNA replication stress by stalling DNA replication forks. T2AA significantly inhibited translesion DNA synthesis on a cisplatin-cross-linked template in cells. When cells were treated with a combination of cisplatin and T2AA, a significant increase in phospho(Ser139)histone H2AX induction and cell growth inhibition was observed.  相似文献   

3.
Proliferating cell nuclear antigen (PCNA) is an essential component for DNA replication and DNA damage response. Numerous proteins interact with PCNA through their short sequence called the PIP-box to be promoted to their respective functions. PCNA supports translesion DNA synthesis (TLS) by interacting with TLS polymerases through PIP-box interaction. Previously, we found a novel small molecule inhibitor of the PCNA/PIP-box interaction, T2AA, which inhibits DNA replication in cells. In this study, we created T2AA analogues and characterized them extensively for TLS inhibition. Compounds that inhibited biochemical PCNA/PIP-box interaction at an IC50 <5 μM inhibited cellular DNA replication at 10 μM as measured by BrdU incorporation. In cells lacking nucleotide-excision repair activity, PCNA inhibitors inhibited reactivation of a reporter plasmid that was globally damaged by cisplatin, suggesting that the inhibitors blocked the TLS that allows replication of the plasmid. PCNA inhibitors increased γH2AX induction and cell viability reduction mediated by cisplatin. Taken together, these findings suggest that inhibitors of PCNA/PIP-box interaction could chemosensitize cells to cisplatin by inhibiting TLS.  相似文献   

4.
Proliferating cell nuclear antigen (PCNA) plays an essential role in eukaryotic DNA replication, and numerous DNA replication proteins have been found to interact with PCNA through a conserved eight-amino acid motif called the PIP-box. We have searched the genome of the yeast Saccharomyces cerevisiae for open reading frames that encode proteins with putative PIP-boxes and initiated testing of 135 novel candidates for their ability to interact with PCNA-conjugated agarose beads. The first new PCNA-binding protein identified in this manner is the 5' to 3' DNA helicase RRM3. Yeast two-hybrid tests show that N-terminal deletions of RRM3, which remove the PIP-box but leave the helicase motifs intact, abolish the interaction with PCNA. In addition, mutating the two phenylalanine residues in the PIP-box to alanine or aspartic acid reduces binding to PCNA, confirming that the PIP-box in RRM3 is responsible for interaction with PCNA. The results presented here suggest that the RRM3 helicase functions at the replication fork.  相似文献   

5.
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and control of cell proliferation, and its activity can be modulated by interaction with p21(Waf1/Cip1) [Cox, L. S., (1997) Trends Cell Biol. 7, 493-497]. This protein-protein interaction provides a particularly good model target for designing therapeutic agents to treat proliferative disorders such as cancer. In this study, the formation of complexes between PCNA and peptides derived from the C-terminus of p21 has been investigated at the molecular level and quantified using a competitive PCNA binding assay and isothermal titration calorimetry (ITC). The affinity constant for the interaction between p21 (141-160) peptide and PCNA has been determined to be 1.14 x 10(7) M(-)(1), corresponding to a K(d) of 87.7 nM. Measurement of the interaction of truncation and substitution analogues based on the p21 (141-160) sequence with PCNA revealed that the N-terminal part (residues 141-152) of the above peptide is the minimum recognition motif, required for PCNA binding. Truncation of the C-terminal region p21 (153-160), though, inhibited significantly the ability of the peptides to compete with the full-length p21 (141-160) for binding to PCNA. Alanine mutation of Met 147 or Asp 149 completely abolished or significantly decreased, respectively, the level of the PCNA binding and the inhibition of SV40 DNA replication. Comparison of the data obtained by the competitive PCNA binding assay and the ITC measurements demonstrated the usefulness of this assay for screening for compounds that could modulate the PCNA-p21 interaction. Using this assay, we have screened rationally designed peptides for binding to PCNA and interruption of the PCNA-p21 (141-160) complex. As a result of this screening, we have identified a 16-residue peptide (consensus motif 1 peptide) with the following sequence: SAVLQKKITDYFHPKK. Consensus motif 1 peptide and p21 (141-160) have similar affinities for binding PCNA and abilities to inhibit in vitro replication of DNA originated from SV40. Such peptides could prove useful in assessing p21-mimetic strategies for cancer treatment.  相似文献   

6.
Proliferating cell nuclear antigen (PCNA) is a critical player in cell proliferation. It interacts with a myriad of cellular proteins in genomic DNA replication and cell cycle control. This makes PCNA an attractive target for developing antiproliferative therapeutics. Indeed, the binding of a human tumor suppressor protein, p21, to PCNA contributes to its antiproliferative effect in cells. In this work, we report a fluorescence polarization-based binding assay for determining the affinity between the p21 peptide and human PCNA. To improve the potency of the p21-based PCNA antagonist, we exploited the homotrimeric structure of PCNA and developed multivalent peptide-based PCNA antagonists. The di- and trivalent p21-based antagonists bind to PCNA with low nanomolar dissociation constant. Moreover, we show that the multivalent PCNA antagonists inhibited PCNA-dependent DNA synthesis in a human cell extract with improved avidity when compared with the monovalent p21 peptide. The fluorescence polarization assay holds promise for the discovery of potent small-molecule PCNA inhibitors given its ready adaptability to a high-throughput screening format.  相似文献   

7.
DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21CDKN1A (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.  相似文献   

8.
Proliferating cell nuclear antigen (PCNA) is the sliding clamp that is essential for the high processivity of DNA synthesis during DNA replication. Pyrococcus furiosus, a hyperthermophilic archaeon, has at least two DNA polymerases, polymerase BI (PolBI) and PolD. Both of the two DNA polymerases interact with the archaeal P. furiosus PCNA (PfuPCNA) and perform processive DNA synthesis in vitro. This phenomenon, in addition to the fact that both enzymes display 3'-5' exonuclease activity, suggests that both DNA polymerases work in replication fork progression. We demonstrated here that both PolBI and PolD functionally interact with PfuPCNA at their C-terminal PIP boxes. The mutant PolBI and PolD enzymes lacking the PIP-box sequence do not respond to the PfuPCNA at all in an in vitro primer extension reaction. This is the first experimental evidence that the PIP-box motif, located at the C termini of the archaeal DNA polymerases, is actually critical for PCNA binding to form a processive DNA-synthesizing complex.  相似文献   

9.
DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV) that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA). This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein). The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.  相似文献   

10.
The cell cycle regulator p21 interacts with and inhibits the DNA replication and repair factor proliferating cell nuclear antigen (PCNA). We have defined a 39 amino acid fragment of p21 which is sufficient to bind PCNA with high affinity (Kd 10-20 nM). This peptide can inhibit DNA replication in vitro and microinjection of a GST fusion protein containing this domain inhibited S phase in vivo. Despite its high affinity for PCNA, the free 39 amino acid peptide does not have a well-defined structure, as judged from circular dichroism and nuclear magnetic resonance measurements, suggesting an induced fit mechanism for the PCNA-p21 interaction. The association of the small peptide with PCNA was thermolabile, suggesting that portions of p21 adjoining the minimal region of contact stabilize the interaction. In addition, a domain containing 67 amino acids from the N-terminus of PCNA was defined as both necessary and sufficient for binding to p21.  相似文献   

11.
Xu H  Zhang P  Liu L  Lee MY 《Biochemistry》2001,40(14):4512-4520
Proliferating cell nuclear antigen (PCNA) has recently been identified as a target for the binding of proteins involved in DNA replication, DNA repair, and cell cycle control. The interactions between PCNA and a number of these proteins are known to be mediated by a conserved peptide motif. In this study, a random peptide library in which peptide sequences are displayed on the E. coli bacterial flagellin protein was screened for PCNA-binding sequences. Analysis of the retrieved peptide sequences verified the presence of the known PCNA-binding motif. In addition, a second, larger group of peptides containing a different consensus sequence for PCNA binding was discovered. This sequence was found to be present on DNA polymerase delta, and a peptide conforming to this sequence was demonstrated to bind to PCNA. Database search and analysis show that many proteins contain the second consensus sequence. These include proteins that are involved in DNA replication, repair, and cell cycle control. The demonstration of this second PCNA-binding motif may provide a basis for identifying and experimentally testing specific proteins for the structural basis for PCNA binding.  相似文献   

12.
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.  相似文献   

13.
Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.  相似文献   

14.
Proliferating cell nuclear antigen (PCNA) assumes an indispensable role in supporting cellular DNA replication and repair by organizing numerous protein components of these pathways via a common PCNA-interacting sequence motif called a PIP-box. Given the multifunctional nature of PCNA, the selective inhibition of PIP-box-mediated interactions may represent a new strategy for the chemosensitization of cancer cells to existing DNA-directed therapies; however, promiscuous blockage of these interactions may also be universally deleterious. To address these possibilities, we utilized a chemical strategy to irreversibly block PIP-box-mediated interactions. Initially, we identified and validated PCNA methionine 40 (M40) and histidine 44 (H44) as essential residues for PCNA/PIP-box interactions in general and, more specifically, for efficient PCNA loading onto chromatin within cells. Next, we created a novel small molecule incorporating an electrophilic di-chloro platinum moiety that preferentially alkylated M40 and H44 residues. The compound, designated T2Pt, covalently cross-linked wild-type but not M40A/H44A PCNA, irreversibly inhibited PCNA/PIP-box interactions, and mildly alkylated plasmid DNA in vitro. In cells, T2Pt persistently induced cell cycle arrest, activated ATR-Chk1 signaling and modestly induced DNA strand breaks, features typical of cellular replication stress. Despite sustained activation of the replication stress response by the compound and its modestly genotoxic nature, T2Pt demonstrated little activity in clonogenic survival assays as a single agent, yet sensitized cells to cisplatin. The discovery of T2Pt represents an original effort directed at the development of irreversible PCNA inhibitors and sets the stage for the discovery of analogues more selective for PCNA over other cellular nucleophiles.  相似文献   

15.
Proliferating cell nuclear antigen (PCNA) is an essential cofactor for DNA replication and repair, recruiting multiple proteins to their sites of action. We examined the effects of the PCNAS228I mutation that causes PCNA-associated DNA repair disorder (PARD). Cells from individuals affected by PARD are sensitive to the PCNA inhibitors T3 and T2AA, showing that the S228I mutation has consequences for undamaged cells. Analysis of the binding between PCNA and PCNA-interacting proteins (PIPs) shows that the S228I change dramatically impairs the majority of these interactions, including that of Cdt1, DNMT1, PolD3p66 and PolD4p12. In contrast p21 largely retains the ability to bind PCNAS228I. This property is conferred by the p21 PIP box sequence itself, which is both necessary and sufficient for PCNAS228I binding. Ubiquitination of PCNA is unaffected by the S228I change, which indirectly alters the structure of the inter-domain connecting loop. Despite the dramatic in vitro effects of the PARD mutation on PIP-degron binding, there are only minor alterations to the stability of p21 and Cdt1 in cells from affected individuals. Overall our data suggests that reduced affinity of PCNAS228I for specific clients causes subtle cellular defects in undamaged cells which likely contribute to the etiology of PARD.  相似文献   

16.
17.
The subunit that mediates binding of proliferating cell nuclear antigen (PCNA) to human DNA polymerase delta has not been clearly defined. We show that the third subunit of human DNA polymerase delta, p66, interacts with PCNA through a canonical PCNA-binding sequence located in its C terminus. Conversely, p66 interacts with the domain-interconnecting loop of PCNA, a region previously shown to be important for DNA polymerase delta activity and for binding of the cell cycle inhibitor p21(Cip1). In accordance with this, a peptide containing the PCNA-binding domain of p21(Cip1) inhibited p66 binding to PCNA and the activity of native three-subunit DNA polymerase delta. Furthermore, pull-down assays showed that DNA polymerase delta requires p66 for interaction with PCNA. More importantly, only reconstituted three-subunit DNA polymerase delta displayed PCNA-dependent DNA replication that could be inhibited by the PCNA-binding domain of p21(Cip1). Direct participation of p66 in PCNA-dependent DNA replication in vivo is demonstrated by co-localization of p66 with PCNA and DNA polymerase delta within DNA replication foci. Finally, in vitro phosphorylation of p66 by cyclin-dependent kinases suggests that p66 activity may be subject to cell cycle-dependent regulation. These results suggest that p66 is the chief mediator of PCNA-dependent DNA synthesis by DNA polymerase delta.  相似文献   

18.
The proliferating cell nuclear antigen (PCNA) is well recognized as one of the essential cellular components of the DNA replication machinery in all eukaryotic organisms. Despite their prominent importance, very little biochemical and structural information about plant PCNAs is available, in comparison with that obtained from other eukaryotic organisms. We have determined the atomic resolution crystal structures of the two distinct Arabidopsis thaliana PCNAs (AtPCNA), both complexed with the C‐terminal segment of human p21. Both AtPCNAs form homotrimeric ring structures, which are essentially identical to each other, including the major contacts with the p21 peptide. The structure of the amino‐terminal half of the p21 peptide, containing the typical PIP box sequence, is remarkably similar to those observed in the previously reported crystal structures of the human and archaeal PCNA‐PIP box complexes. Meanwhile, the carboxy‐terminal halves of the p21 peptide in the plant PCNA complexes are bound to the protein in a unique manner, most probably because of crystal packing effects. A surface plasmon resonance analysis revealed high affinity between each AtPCNA and the C‐terminal fragment of human p21. This result strongly suggests that the interaction is functionally significant, although no plant homologs of p21 have been identified yet. We also discovered that AtPCNA1 and AtPCNA2 form heterotrimers, implying that hetero‐PCNA rings may play critical roles in cellular signal transduction, particularly in DNA repair.  相似文献   

19.
Exposure of a lung epithelial cell line to ionizing radiation (IR) arrests cell cycle progression through 48 h post-exposure. Coincidentally, IR differentially activates expression of the cell cycle inhibitor, p21/WAF1, and the DNA replication protein, proliferating cell nuclear antigen (PCNA). p21/WAF1 mRNA levels remain elevated through 48 h post-exposure to IR, while PCNA mRNA levels increase transiently at early times. Since p21/WAF1 inhibits DNA replication by directly binding PCNA, the relative levels of the two proteins can determine cell cycle progression. The PCNA p53-binding site displayed reduced p53 binding affinity in vitro relative to the distal p21/WAF1 p53-binding site. Substitution of the p21/WAF1 site for the resident p53-binding site in the PCNA promoter altered the responses to increasing amounts of p53 or IR in transient expression assays. The p21/WAF1 p53-binding site sustained activation of the chimeric PCNA promoter under conditions (high p53 levels or high dose IR) that the PCNA p53-binding site did not. Binding site-specific regulation by wild-type p53 was not observed with mutant p53 harboring a serine to alanine change at amino acid 46. Limited activation of the PCNA promoter by p53 and its modified forms would restrict the amount of PCNA made available for DNA repair.  相似文献   

20.
The formation of a complex between DNA polymerase delta (pol delta) and its sliding clamp, proliferating cell nuclear antigen (PCNA), is responsible for the maintenance of processive DNA synthesis at the leading strand of the replication fork. In this study, the ability of the p125 catalytic subunit of DNA polymerase delta to engage in protein-protein interactions with PCNA was established by biochemical and genetic methods. p125 and PCNA were shown to co-immunoprecipitate from either calf thymus or HeLa extracts, or when they were ectopically co-expressed in Cos 7 cells. Because pol delta is a multimeric protein, this interaction could be indirect. Thus, rigorous evidence was sought for a direct interaction of the p125 catalytic subunit and PCNA. To do this, the ability of recombinant p125 to interact with PCNA was established by biochemical means. p125 co-expressed with PCNA in Sf9 cells was shown to form a physical complex that can be detected on gel filtration and that can be cross-linked with the bifunctional cross-linking agent Sulfo-EGS (ethylene glycol bis (sulfosuccinimidylsuccinate)). An interaction between p125 and PCNA could also be demonstrated in the yeast two hybrid system. Overlay experiments using biotinylated PCNA showed that the free p125 subunit interacts with PCNA. The PCNA overlay blotting method was also used to demonstrate the binding of synthetic peptides corresponding to the N2 region of pol delta and provides evidence for a site on pol delta that is involved in the protein-protein interactions between PCNA and pol delta. This region contains a sequence that is a potential member of the PCNA binding motif found in other PCNA-binding proteins. These studies provide an unequivocal demonstration that the p125 subunit of pol delta interacts with PCNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号