首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increased synthesis of hyaluronic acid (HA) is often associated with increased metastatic potential and invasivity of tumor cells. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis, and has been studied as a potential anti-tumor drug to inhibit the growth of primary tumors and distant metastasis of tumor cells. Although several studies reported that the anticancer effects of MU are mediated by inhibition of HA signaling, the mechanism still needs to be clarified. In a previous study we demonstrated the regulation of HA synthesis by ceramide, and now show how MU activated neutral sphingomyelinase2 (NSMase2) generates ceramides and mediates MU induced inhibition of HA synthesis, cell migration and invasion, and apoptosis of tumor cells. Using a HA enriched mouse oligodendroglioma cell line G26-24 we found that MU elevated the activity of NSMase2 and increased ceramide levels, which in turn increased phosphatase PP2A activity. Further, the activated PP2A reduced phosphorylation of Akt, decreased activities of HA synthase2 (HAS2) and calpains, and inhibited both the synthesis of HA, and the migration and invasion of G26-24 tumor cells. In addition, MU mediated ceramide stimulated activation of p53 and caspase-3, reduced SIRT1 expression and decreased G26-24 viability. The mechanism of the MU anticancer therefore initially involves NSMase2/ceramide/PP2A/AKT/HAS2/caspase-3/p53/SIRT1 and the calpain signaling pathway, suggesting that ceramides play a key role in the ability of a tumor to become aggressively metastatic and grow.  相似文献   

3.
4.
The aim of this study was to evaluate how growth factors (PDGF-BB, EGF, and TGF-1beta) modulate hyaluronan synthase (HAS) activities in normal or stressed cultured human skin fibroblasts. The effects of concomitant treatment with cytokines and FeSO4 plus ascorbate on HAS mRNA expression, protein synthesis, and hyaluronic acid (HA) concentrations were also studied. Treatment of fibroblasts with growth factors up-regulated HAS gene expression and increased HAS enzymes and HA production. PDGF-BB induced HAS mRNA expression, protein synthesis, and HA production more efficiently than EGF and TGF-1beta. EGF was less effective than TGF-1beta. In addition, TGF-1beta reduced the expression and synthesis of HAS3, while PDGF-BB and EGF had the opposite effect. Concomitant treatment with growth factors and the oxidant was able to further increase HAS mRNA expression, once again with the exception of HAS3 with TGF-1beta. HAS protein synthesis was reduced, while HA levels were unaffected in comparison to those obtained from exposure to FeSO4 plus ascorbate alone. In conclusion, although growth factors plus the oxidant synergistically induced HAS mRNA expression in part, enzyme production was not correlated with this increase. Moreover, the increase in HAS mRNA levels was not translated into a consequent rise in HA concentration.  相似文献   

5.
Thyroid eye disease is characterized by the infiltration of leukocytes and accumulation of hyaluronan (HA) in orbital tissue. Inflamed orbital tissue expands in size due to excessive HA and to the formation of scar tissue (fibrosis) and/or adipose accumulation. Transforming growth factor β (TGF-β) acts as a key inducer of fibrosis by enhancing extracellular matrix production. Treatment of primary human orbital fibroblasts with TGF-β led to significant increases in both HA synthesis and secretion. TGF-β also strongly induced hyaluronan synthase 1 (HAS1) and HAS2 mRNA levels, which increased 50- and 6-fold, respectively. Remarkably, the addition of the peroxisome proliferator-activated receptor (PPARγ) ligands pioglitazone (Pio) or rosiglitazone (Rosi) to TGF-β-treated orbital fibroblasts attenuated HA synthesis and reduced HAS1 and HAS2 mRNA levels. The attenuation of TGF-β function by Pio and Rosi was independent of PPARγ activity. Furthermore, Pio and Rosi treatment inhibited TGF-β-induced T cell adhesion to orbital fibroblasts. Our findings demonstrate that TGF-β plays an important role in HA synthesis and in the inflammatory response by enhancing or facilitating inflammatory cell infiltration and adhesion to orbital tissue. Pio and Rosi exhibit anti-fibrotic and anti-inflammatory activity and may be useful in treating thyroid eye disease.  相似文献   

6.
Versican, a large chondroitin sulphate proteoglycan and hyaluronan (HA), a non-sulphated glycosaminoglycan are major constituents of the pericellular matrix. In many neoplastic tissues, changes in the expression of versican and HA affect tumour progression. Here, we analyse the synthesis of versican and hyaluronan by fibrosarcoma cells, and document how the latter is affected by PDGF-BB, bFGF and TGFB2, growth factors endogenously produced by these cells. Fibrosarcoma cell lines B6FS and HT1080 were utilised and compared with normal lung fibroblasts (DLF). The major versican isoforms expressed by DLF and B6FS cells were V0 and V1. Treatment of B6FS cells with TGFB2 showed a significant increase of V0 and V1 mRNAs. Versican expression in HT1080 cells was not significantly affected by any of the growth factors. In addition, TGFB2 treatment increased versican protein in DLF cells. HA, showed approximately a 2-fold and a 9-fold higher production in DLF cells compared to B6FS and HT1080 cells, respectively. In HT1080 cells, HA biosynthesis was significantly increased by bFGF, whereas, in B6FS cells it was increased by TGFB2 and PDGF-BB. Furthermore, analysis of HA synthases (HAS) expression indicated that HT1080 expressed similar levels of all three HAS isoforms in the following order: HAS2> HAS3> HAS1. bFGF shifted that balance by increasing the abundance of HAS1. The major HAS isoform expressed by B6FS cells was HAS2. PDGF-BB and TGFB2 showed the most prominent effects by increasing both HAS2 and HAS1 isoforms. In conclusion, these growth factors modulated, through upregulation of specific HAS isoforms, HA synthesis, secretion and net deposition to the pericellular matrix.  相似文献   

7.
Deposition of extracellular matrix (ECM) in trabecular meshwork, such as fibronectin, collagen IV, elastin. leads to increased resistance of trabecular meshwork in primary open angle glaucoma (POAG). Connective tissue growth factor (CTGF) is known to regulate the ECM deposits. In this study, we detect the effect of adenovirus conducted CTGF (Adv-CTGF) transfection on either the expression of ECM components or aqueous humor outflow facility. Adv-CTGF was used to transfect rat trabecular meshwork cells in vivo and in vitro. Aqueous humor outflow facility was test by microbeads perfusion. Protein expression of CTGF, fibronectin, and collagen IV was determined using Western blot. In the Adv-CTGF group, the outflow facility displayed a significant decrease from baseline. It appears as though the transfection with Adv-CTGF significantly affects the aqueous humor outflow pattern. A negative correlation between IOP and PEFL indicated that a decrease in the area of bead deposition corresponded to an overall decrease of outflow, leading to an elevated IOP. Adv-CTGF can enhance the expression of CTGF, fibronectin and collagen IV. CTGF is the novel target for treatment of POAG. It is necessary to further study to test inhibition of CTGF expression for treatment of POAG.  相似文献   

8.
Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.  相似文献   

9.
Changes in the composition and assembly of extracellular matrix (ECM) are the most prominent structure abnormalities of the vascular system encountered in early diabetes. Hyaluronan (HA) is a key biologically active element of ECM that plays a crucial role in vascular remodelling in atherosclerosis and restenosis following percutaneous coronary intervention. Hyperglycaemia led to significant increase in HA secretion by vascular smooth muscle cells. Hyperglycaemia also strongly induced HA synthase mRNA levels, notably HAS1–HAS3 mRNA. Remarkably, peroxisome proliferator-activated receptor (PPAR-γ) agonists pioglitazone (Pio) and rosiglitazone (Rosi), a class of anti-diabetic drugs, attenuated hyperglycaemia-induced HA secretion and reduced HAS2 mRNA expression. In vitro experiment with siRNA specific to PPAR-γ demonstrated that the attenuation of hyperglycaemia-induced HA secretion by Pio and Rosi was independent of PPAR-γ activity. Furthermore, hyperglycaemia-induced increase in HA secretion and HAS2 mRNA expression involved protein kinase Cβ2 (PKCβ2) activation, while Pio and Rosi exerted their attenuating effect on HA secretion by inhibiting PKCβ2.  相似文献   

10.
The dysregulation of the metabolism of glycosaminoglycan and protein components of extracellular matrix (ECM) is a typical feature of diabetic complications. High glucose-induced enrichment of ECM with hyaluronan (HA) not only affects tissue structural integrity, but influences cell metabolic response due to the variety of effects depending on the HA polymer molecular weight. TSP-1-dependent activation of TGFbeta1 axis is known to mediate numerous matrix disorders in diabetes, but its role concerning HA has not been studied so far. In this work we demonstrated that 30 mM D-glucose increased the incorporation of [(3)H]glucosamine in high-molecular-weight (> 2000 kDa) HA of medium and matrix compartments of human mesangial cultures. Simultaneously, the synthesis of HA with lower molecular weight and HA degradation were not altered. The cause of the increased high-molecular-weight HA synthesis consisted in the up-regulation of hyaluronan synthase (HAS) 2 mRNA without alterations of the expression of HAS3, which generates HA of lower molecular weight. D-Glucose at 30 mM also stimulated the production of transforming growth factor beta1 (TGFbeta1), the excessive activation of which was determined by the up-regulation of thrombospondin-1 (TSP-1). The blockage of TGFbeta1 action either by neutralizing anti-TGFbeta1 antibodies or by quenching the TGFbeta1 activation (with TSP-1-derived synthetic GGWSHW peptide) abolished the effect of high glucose on HAS2 mRNA expression and normalized the synthesis of HA. Exogenous human TGFbeta1 had the same effect on HAS2 expression and HA synthesis as high glucose treatment. Therefore, we supposed that TSP-1-dependent TGFbeta1 activation is involved in the observed high glucose effect on HA metabolism. Since high-molecular-weight HA polymers, unlike middle- and low-molecular weight HA oligosaccharides, are known to possess anti-inflammatory and anti-fibrotic functions, we suppose that the enrichment of mesangial matrix with high-molecular-weight HA may represent an endogenous mechanism to limit renal injury in diabetes.  相似文献   

11.
Hyaluronan (HA) is one of the major extracellular matrix components in cartilage. In addition to the biomechanical functions, HA has various important roles in the differentiation of chondrocytes. The purpose of this study was to clarify the nature of HA synthesis during chondrocyte differentiation. Growth plate chondrocytes were isolated from rabbit ribs and cultured in chondrocyte differentiation medium. The amount of HA and HA synthase (HAS) mRNA levels were analyzed for each stage of chondrocyte differentiation by means of high-performance liquid chromatography (HPLC) and real-time PCR, respectively. The distribution of HA in cultured chondrocytes was observed by histochemical staining. The amount of HA, ranging widely in size, was increased substantially during the hypertrophic stage. The expression levels of HAS2 and HAS3 mRNAs were low during the matrix-forming stage. HAS2 mRNA level was substantially enhanced at the pre-hypertrophic stage, whereas HAS3 mRNA level exhibited a slight increase. HAS1 mRNA was not detected. The intensity of HA staining was high around the hypertrophic chondrocytes. These results suggest that HA metabolism in chondrocyte differentiation is regulated by the selective expression of HASs, and HAS2 and the related large size-HA may have a certain association with the hypertrophic changes of chondrocytes.  相似文献   

12.
Keratocytes of the corneal stroma produce transparent extracellular matrix devoid of hyaluronan (HA); however, in corneal pathologies and wounds, HA is abundant. We previously showed primary keratocytes cultured under serum-free conditions to secrete matrix similar to that of normal stroma, but serum and transforming growth factor beta (TGFbeta) induced secretion of fibrotic matrix components, including HA. This study found HA secretion by primary bovine keratocytes to increase rapidly in response to TGFbeta, reaching a maximum in 12 h and then decreasing to <5% of the maximum by 48 h. Cell-free biosynthesis of HA by cell extracts also exhibited a transient peak at 12 h after TGFbeta treatment. mRNA for hyaluronan synthase enzymes HAS1 and HAS2 increased >10- and >50-fold, respectively, in 4-6 h, decreasing to near original levels after 24-48 h. Small interfering RNA against HAS2 inhibited the transient increase of HAS2 mRNA and completely blocked HA induction, but small interfering RNA to HAS1 had no effect on HA secretion. HAS2 mRNA was induced by a variety of mitogens, and TGFbeta acted synergistically to induce HAS2 by as much as 150-fold. In addition to HA synthesis, treatment with TGFbeta induced degradation of fluorescein-HA added to culture medium. These results show HA secretion by keratocytes to be initiated by a rapid transient increase in the HAS2 mRNA pool. The very rapid induction of HA expression in keratocytes suggests a functional role of this molecule in the fibrotic response of keratocytes to wound healing.  相似文献   

13.
Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.  相似文献   

14.
The trabecular meshwork, a specialized tissue in the anterior chamber of the eye, plays a major role in the regulation of aqueous humor outflow. We studied the effects of ascorbic acid, a significant component in the aqueous humor, on gene expression of type I collagen in cultures of bovine trabecular meshwork cells. These cells were plated for 6 days, exposed to ascorbic acid in concentrations of 100, 250 and 500 micrograms/ml for 3 days and labeled with (3H)proline for the last 24 hrs. Cultures that did not receive ascorbic acid served as controls. Bacterial collagenase assays showed enhanced incorporation of (3H)proline into collagenous proteins in cultures treated with 100 and 250 micrograms/ml of ascorbic acid. Gel electrophoresis and fluorography revealed that ascorbic acid caused a 2.6- to 4.9-fold increase in production of alpha 1 (I) and alpha 2(I) collagen chains by trabecular meshwork cells. Such an increase was found, using a cDNA probe specific for pro alpha 1(I) chains, to be accompanied by an increase in steady-state mRNA levels. Similar findings were also yielded from in situ hybridization experiments. These results, coupled with previously demonstrated ascorbate-induced effects on glycosaminoglycan, fibronectin and laminin synthesis, suggest that ascorbic acid is a key mediator of the extracellular matrix production by trabecular meshwork cells. Fluctuations in its concentration may lead to alterations in the makeup and assembly of matrices underlying the cells.  相似文献   

15.
Hyaluronan (HA) and versican are key components of the dermis and are responsive to ultraviolet (UV)B-induced remodeling. The aim of this study was to explore the molecular mechanisms mediating the effects of estrogen (E(2)) on HA-rich extracellular matrix during photoaging. Hairless skh-1 mice were irradiated with UVB (three times, 1 minimal erythema dose (80 mJ/cm(2)), weekly) for 10 weeks, and endogenous sex hormone production was abrogated by ovariectomy. Subcutaneous substitution of E(2) by means of controlled-release pellets caused a strong increase in the dermal HA content in both irradiated and nonirradiated skin. The increase in dermal HA correlated with induction of HA synthase HAS3 by E(2). Expression of splice variant 2 of the HA-binding proteoglycan versican was also increased by E(2). In search of candidate mediators of these effects, it was found that E(2) strongly induced the expression of epidermal growth factor (EGF) in UVB-irradiated epidermis in vivo and in keratinocytes in vitro. EGF in turn up-regulated the expression of HAS3 and versican V2 in dermal fibroblasts. HAS3 knockdown by shRNA caused inhibition of fibroblast proliferation. Furthermore, HAS3 and versican V2 induction by E(2) correlated positively with proliferation in vivo. In addition, the accumulation of inflammatory macrophages, expression of inducible cyclooxygenase 2, as well as proinflammatory monocyte chemotactic protein 1 were decreased in response to E(2) in the dermis. Collectively, these data suggest that E(2) treatment increases the amount of dermal HA and versican V2 via paracrine release of EGF, which may be implicated in the pro-proliferative and anti-inflammatory effects of E(2) during photoaging.  相似文献   

16.
The heart contains an abundant fibroblast population that may play a role in homeostasis, by maintaining the extracellular matrix (ECM) network, by regulating electrical impulse conduction, and by supporting survival and function of cardiomyocytes and vascular cells. Despite an explosion in our understanding of the role of fibroblasts in cardiac injury, the homeostatic functions of resident fibroblasts in adult hearts remain understudied. TGF-β-mediated signaling through the receptor-activated Smads, Smad2 and Smad3 critically regulates fibroblast function. We hypothesized that baseline expression of Smad2/3 in fibroblasts may play an important role in cardiac homeostasis. Smad2 and Smad3 were constitutively expressed in normal mouse hearts and in cardiac fibroblasts. In cultured cardiac fibroblasts, Smad2 and Smad3 played distinct roles in regulation of baseline ECM gene synthesis. Smad3 knockdown attenuated collagen I, collagen IV and fibronectin mRNA synthesis and reduced expression of the matricellular protein thrombospondin-1. Smad2 knockdown on the other hand attenuated expression of collagen V mRNA and reduced synthesis of fibronectin, periostin and versican. In vivo, inducible fibroblast-specific Smad2 knockout mice and fibroblast-specific Smad3 knockout mice had normal heart rate, preserved cardiac geometry, ventricular systolic and diastolic function, and normal myocardial structure. Fibroblast-specific Smad3, but not Smad2 loss modestly but significantly reduced collagen content. Our findings suggest that fibroblast-specific Smad3, but not Smad2, may play a role in regulation of baseline collagen synthesis in adult hearts. However, at least short term, these changes do not have any impact on homeostatic cardiac function.  相似文献   

17.
TGFβ induces fibrosis in healing corneal wounds, and in vitro corneal keratocytes up-regulate expression of several fibrosis-related genes in response to TGFβ. Hyaluronan (HA) accumulates in healing corneas, and HA synthesis is induced by TGFβ by up-regulation of HA synthase 2. This study tested the hypothesis that HA acts as an extracellular messenger, enhancing specific fibrotic responses of keratocytes to TGFβ. HA synthesis inhibitor 4-methylumbelliferone (4MU) blocked TGFβ induction of HA synthesis in a concentration-dependent manner. 4MU also inhibited TGFβ-induced up-regulation of α-smooth muscle actin, collagen type III, and extra domain A-fibronectin. Chemical analogs of 4MU also inhibited fibrogenic responses in proportion to their inhibition of HA synthesis. 4MU, however, showed no effect on TGFβ induction of luciferase by the 3TP-Lux reporter plasmid. Inhibition of HA using siRNA to HA synthase 2 reduced TGFβ up-regulation of smooth muscle actin, fibronectin, and cell division. Similarly, brief treatment of keratocytes with hyaluronidase reduced TGFβ responses. These results suggest that newly synthesized cell-associated HA acts as an extracellular enhancer of wound healing and fibrosis in keratocytes by augmenting a limited subset of the cellular responses to TGFβ.  相似文献   

18.
Hyaluronan synthases (HAS1–3) are unique in that they are active only when located in the plasma membrane, where they extrude the growing hyaluronan (HA) directly into cell surface and extracellular space. Therefore, traffic of HAS to/from the plasma membrane is crucial for the synthesis of HA. In this study, we have identified Rab10 GTPase as the first protein known to be involved in the control of this traffic. Rab10 colocalized with HAS3 in intracellular vesicular structures and was co-immunoprecipitated with HAS3 from isolated endosomal vesicles. Rab10 silencing increased the plasma membrane residence of HAS3, resulting in a significant increase of HA secretion and an enlarged cell surface HA coat, whereas Rab10 overexpression suppressed HA synthesis. Rab10 silencing blocked the retrograde traffic of HAS3 from the plasma membrane to early endosomes. The cell surface HA coat impaired cell adhesion to type I collagen, as indicated by recovery of adhesion following hyaluronidase treatment. The data indicate a novel function for Rab10 in reducing cell surface HAS3, suppressing HA synthesis, and facilitating cell adhesion to type I collagen. These are processes important in tissue injury, inflammation, and malignant growth.  相似文献   

19.
Several reports have shown that a number of cytokines such as tumor necrosis-α (TNF-α), interferon-γ (IFN-γ), and interleukin-β (IL-1β) are capable to induce hyaluronan sinthases (HASs) mRNA expression in different cell culture types. The obvious consequence of this stimulation is a marked increment in hyaluronan (HA) production. It has been also reported that oxidative stress, by itself, may increase HA levels. The aim of this study was to evaluate how TNF-α, IFN-γ,IL−1β, and exposition to oxidative stress may modulate HAS activities in normal human skin fibroblasts. Moreover, the effects on HAS mRNA expression of the concomitant treatment with cytokines and oxidants, and the HA concentrations after treatments, were studied. TNF-α, IFN-γ, and IL-1β were added to normal or/and exposed to FeSO4 plus ascorbate fibroblast cultures and HAS1, HAS2 and HAS3 mRNA content, by PCR-real time, was assayed 3,h later. HA levels were also evaluated after 24,h incubation. The treatment of fibroblasts with cytokines up-regulated HASs gene expression and increased HA production. IL-1β induced HAS mRNA expression and HA production more efficiently than TNF-α and IFN-γ. The exposition of the fibroblasts with the oxidant system markedly increased HAS activities while slightly HA production. The concomitant treatment of cells with the cytokines and the oxidant was able to further enhance, in a dose dependent way, with synergistic effect on HAS mRNA expression. On the contrary HA levels resulted unaffected by the concomitant treatment, and resemble those obtained with the exposure to FeSO4 plus ascorbate only. This lack in HA production could be due to the deleterious action of free radicals on the HA synthesis.  相似文献   

20.
Hyaluronan (HA) is a glycosaminoglycan that is synthesized by a family of enzymes called hyaluronan synthases (HASs), of which there are three isoforms (HAS1, 2 and 3) in mammals. The HASs have different tissue expression patterns and function, indicating that synthesis of HA and formation of the HA matrix may be regulated by various factors. The HA matrix has an important role in renal water handling and the production of a concentrated urine. We investigated the distribution of HA and the expression of HAS1, HAS2 and HAS3 mRNAs in the kidney of the Spinifex hopping mouse, Notomys alexis, a native Australian desert rodent that is reported to produce the most concentrated urine of any mammal. After periods of three, seven and fourteen days of water deprivation, the distribution of renal HA changed considerably, and there was a general down-regulation of HAS mRNA expression. It is proposed that the regulation of HA synthesis by the different HAS isoforms during water deprivation in N. alexis, could be influenced by the molecular mass of the HA chains produced by each isoform, followed by the rate at which the individual HAS produces HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号