共查询到20条相似文献,搜索用时 0 毫秒
1.
近几年来,关于哺乳动物雷帕霉素靶(mammalian target of rapamycin,mTOR)在各种哺乳动物细胞中调节肌动蛋白微丝极化及肌球蛋白微丝网形成的研究一直在不断地取得新的进展。尽管到目前为止,包括mTORC2上游和下游在内的相关的调控路径还未明确,但是因为mTORC6,的物学多样性,使其成为了当今生物学研究的焦点之一。基于长久以来特别是近五年对mTORC2的研究,在涉及细胞运动迁移、增殖分化、蛋白质合成、凋亡及自噬等生物学功能的研究中,一些重要的下游相关调控分子和蛋白相继被发现,比如P—Rexl/2、Rho家族GTPases、PKC、cAMP、p27kip1等。该综述着重总结了mTORC2实现这些生物学功能所可能通过的四条路径。当然,仍然需要大量的实验数据和研究证据进一步地证实和完善这些已经发现的可能存在的路径。 相似文献
2.
《Journal of molecular biology》2019,431(17):3217-3228
Information on the structural polymorphism of a protein is essential to understand the mechanisms of how it functions at an atomic level. Numerous studies on actin have accumulated substantial amounts of information about its polymorphism, and there are over 200 published atomic structures of different forms of actin using crystallography, fiber diffraction, and electron microscopy. To characterize all the reported structures, we proposed simple parameters based on the discrete rigid bodies within the actin molecule and identified four conformation groups by cluster analysis: the F-form in naked F-actin, the C-form in cofilactin, the O-form in profilin–actin, and the G-form in the majority of actin-containing crystal structures. The G-form group included the most variations, but each conformational variation was convertible via a thermal fluctuation, whereas the F- and C-forms were not accessible from the G-form. The convertibility and accessibility of the structures were evaluated using molecular dynamics simulations. Information about conformational conversion among each group is useful for understanding the mechanisms of actin function. 相似文献
3.
Longhua Hu 《Biophysical journal》2010,98(8):1375-1384
During cell motion on a substratum, eukaryotic cells project sheetlike lamellipodia which contain a dynamically remodeling three-dimensional actin mesh. A number of regulatory proteins and subtle mechano-chemical couplings determine the lamellipodial protrusion dynamics. To study these processes, we constructed a microscopic physico-chemical computational model, which incorporates a number of fundamental reaction and diffusion processes, treated in a fully stochastic manner. Our work sheds light on the way lamellipodial protrusion dynamics is affected by the concentrations of actin and actin-binding proteins. In particular, we found that protrusion speed saturates at very high actin concentrations, where filament nucleation does not keep up with protrusion. This results in sparse filamentous networks, and, consequently, high resistance forces on individual filaments. We also observed maxima in lamellipodial growth rates as a function of Arp2/3, a nucleating protein, and capping proteins. We provide detailed physical explanations behind these effects. In particular, our work supports the actin-funneling-hypothesis explanation of protrusion speed enhancement at low capping protein concentrations. Our computational results are in agreement with a number of related experiments. Overall, our work emphasizes that elongation and nucleation processes work highly cooperatively in determining the optimal protrusion speed for the actin mesh in lamellipodia. 相似文献
4.
Mia M. Thi Sylvia O. Suadicani David C. Spray 《The Journal of biological chemistry》2010,285(40):30931-30941
Although load-induced mechanical signals play a key role in bone formation and maintenance of bone mass and structure, the cellular mechanisms involved in the translation of these signals are still not well understood. Recent identification of a novel flow-induced mechanosignaling pathway involving VEGF in osteoblasts and the known VEGF regulation of actin reorganization in various cell types has led us to hypothesize that fluid shear stress-induced Vegf up-regulation underlies the actin cytoskeleton adaptation observed in osteoblasts during mechanotransduction. Our results show that MC3T3-E1 cells secrete significant VEGF in response to 5 h of pulsatile fluid shear stress (PFSS; 5 dynes/cm2 at 1 Hz), whereas expression of VEGF receptors (VEGFR-1, VEGFR-2, or NRP1) is unaffected. These receptors, in particular VEGFR-2, participate in PFSS-induced VEGF release. Exposure to flow-conditioned medium or exogenous VEGF significantly induces stress fiber formation in osteoblasts that is comparable with PFSS-induced stress fiber formation, whereas VEGF knockdown abrogates this response to PFSS, thereby providing evidence that flow-induced VEGF release plays a role in actin polymerization. Using neutralizing antibodies against the receptors and VEGF isoforms, we found that soluble VEGFs, in particular VEGF164, play a crucial role in transient stress fiber formation during osteoblast mechanotransduction, most likely through VEGFR-2 and NRP1. Based on these data we conclude that flow-induced VEGF release from osteoblasts regulates osteoblast actin adaptation during mechanotransduction and that VEGF paracrine signaling may provide potent cross-talk among bone cells and endothelial cells that is essential for fracture healing, bone remodeling, and osteogenesis. 相似文献
5.
Alessia Para Miriam Krischke Sylvain Merlot Zhouxin Shen Michael Oberholzer Susan Lee Steven Briggs Richard A. Firtel 《Molecular biology of the cell》2009,20(2):699-707
Cell motility of amoeboid cells is mediated by localized F-actin polymerization that drives the extension of membrane protrusions to promote forward movements. We show that deletion of either of two members of the Dictyostelium Dock180 family of RacGEFs, DockA and DockD, causes decreased speed of chemotaxing cells. The phenotype is enhanced in the double mutant and expression of DockA or DockD complements the reduced speed of randomly moving DockD null cells'' phenotype, suggesting that DockA and DockD are likely to act redundantly and to have similar functions in regulating cell movement. In this regard, we find that overexpressing DockD causes increased cell speed by enhancing F-actin polymerization at the sites of pseudopod extension. DockD localizes to the cell cortex upon chemoattractant stimulation and at the leading edge of migrating cells and this localization is dependent on PI3K activity, suggesting that DockD might be part of the pathway that links PtdIns(3,4,5)P3 production to F-actin polymerization. Using a proteomic approach, we found that DdELMO1 is associated with DockD and that Rac1A and RacC are possible in vivo DockD substrates. In conclusion, our work provides a further understanding of how cell motility is controlled and provides evidence that the molecular mechanism underlying Dock180-related protein function is evolutionarily conserved. 相似文献
6.
Muhammad Shah Nawaz-ul-Rehman K. Reddisiva Prasanth Kai Xu Zsuzsanna Sasvari Nikolay Kovalev Isabel Fernández de Castro Martín Daniel Barajas Cristina Risco Peter D. Nagy 《PLoS pathogens》2016,12(2)
RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. 相似文献
7.
Zeynep A. Oztug Durer Dmitri S. Kudryashov Michael R. Sawaya Christian Altenbach Wayne Hubbell Emil Reisler 《Biophysical journal》2012,103(5):930-939
Conformational changes induced by ATP hydrolysis on actin are involved in the regulation of complex actin networks. Previous structural and biochemical data implicate the DNase I binding loop (D-loop) of actin in such nucleotide-dependent changes. Here, we investigated the structural and conformational states of the D-loop (in solution) using cysteine scanning mutagenesis and site-directed labeling. The reactivity of D-loop cysteine mutants toward acrylodan and the mobility of spin labels on these mutants do not show patterns of an α-helical structure in monomeric and filamentous actin, irrespective of the bound nucleotide. Upon transition from monomeric to filamentous actin, acrylodan emission spectra and electron paramagnetic resonance line shapes of labeled mutants are blue-shifted and more immobilized, respectively, with the central residues (residues 43–47) showing the most drastic changes. Moreover, complex electron paramagnetic resonance line shapes of spin-labeled mutants suggest several conformational states of the D-loop. Together with a new (to our knowledge) actin crystal structure that reveals the D-loop in a unique hairpin conformation, our data suggest that the D-loop equilibrates in F-actin among different conformational states irrespective of the nucleotide state of actin. 相似文献
8.
9.
钙调蛋白结合蛋白通过调节细胞骨架稳定性影响肿瘤细胞运动能力 总被引:1,自引:0,他引:1
轻链钙调蛋白结合蛋白(light-chain Caldesmon,l-CaD)是一种重要的肌动蛋白结合蛋白,普遍存在于众多非肌肉细胞中。体外研究证明,l-CaD能通过与肌动蛋白的结合起到促进原肌动蛋白(G-actin)聚合、稳定肌动蛋白纤维(F-actin)结构的作用。在磷酸化作用下,l-CaD能从肌动蛋白纤维上脱离并促进肌动蛋白纤维的解聚。该研究拟考察l-CaD在细胞内对细胞肌动蛋白骨架的调节作用,阐明l-CaD对细胞运动能力的影响,作者将天然低表达l-CaD的人源性乳腺癌细胞MCF-7作为细胞模型,在MCF-7胞内以基因转染的方式高表达外源野生型l-CaD及其磷酸化突变株A1234-CaD(不可磷酸化CaD)、D1234-CaD(完全磷酸化CaD)。首先,通过激光共聚焦扫描,探讨了l-CaD对细胞骨架重排的调节;其次,通过细胞迁移transwell阵列,检测了l-CaD对细胞迁移能力的影响;最后,在单细胞层次上测定了细胞基底牵张力、胰酶刺激下的细胞基底脱附能力,并进一步检测了l-CaD对细胞迁移子过程中细胞伸张、收缩的影响。研究结果显示,l-CaD在胞内对细胞骨架的形成有显著的调控作用。非磷酸化l-CaD主要富集在细胞骨架上,增强了细胞骨架的强度,导致细胞基底牵张力以及对胰酶的耐受性增强,但对细胞的迁移能力有显著的抑制作用;磷酸化l-CaD跟细胞骨架结合能力很弱,对细胞的运动能力没有显著影响。通过磷酸化,l-CaD起到了一个“蛋白开关”的作用,通过控制细胞骨架的解聚、重排来调节细胞的运动能力。 相似文献
10.
Structures of homologous proteins are usually conserved during evolution, as are critical active site residues. This is the
case for actin and tubulin, the two most important cytoskeleton proteins in eukaryotes. Actins and their related proteins
(Arps) constitute a large superfamily whereas the tubulin family has fewer members. Unaligned sequences of these two protein
families were analysed by searching for short groups of family-specific amino acid residues, that we call motifs, and by counting
the number of residues from one motif to the next. For each sequence, the set of motif-to-motif residue counts forms a subfamily-specific
pattern (landmark pattern) allowing actin and tubulin superfamily members to be identified and sorted into subfamilies. The
differences between patterns of individual subfamilies are due to inserts and deletions (indels). Inserts appear to have arisen
at an early stage in eukaryote evolution as suggested by the small but consistent kingdom-dependent differences found within
many Arp subfamilies and in γ-tubulins. Inserts tend to be in surface loops where they can influence subfamily-specific function
without disturbing the core structure of the protein. The relatively few indels found for tubulins have similar positions
to established results, whereas we find many previously unreported indel positions and lengths for the metazoan Arps. 相似文献
11.
Previous studies have shown that the rate of breast cancer metastasis correlates with the expression of vacuolar H+-ATPases (V-ATPases). However, how V-ATPase is involved in breast cancer metastasis remains unknown. Our previous study showed that Atp6v1c1-depleted osteoclasts did not form organized actin rings and that Atp6v1c1 co-localizes with F-actin. In this study, we found that the normal arrangement of filamentous actin is disrupted in Atp6v1c1-depleted 4T1 mouse breast cancer cells and in the ATP6V1C1-depleted human breast cancer cell lines MDA-MB-231 and MDA-MB-435s. We further found that Atp6v1c1 co-localizes with F-actin in 4T1 cells. The results of our study suggest that high expression of Atp6v1c1 affects the actin structure of cancer cells such that it facilitates breast cancer metastasis. The findings also indicate that Atp6v1c1 could be a novel target for breast cancer metastasis therapy. 相似文献
12.
Zhenzhen Zhou Haifan Shi Binqing Chen Ruihui Zhang Shanjin Huang Ying Fu 《The Plant cell》2015,27(4):1140-1161
Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis
thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca2+ in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth. 相似文献
13.
14.
The role of actin dynamics in clathrin-mediated endocytosis in mammalian cells is unclear. In this study, we define the role of actin cytoskeleton in Kaposi''s sarcoma-associated herpesvirus (KSHV) entry and trafficking in endothelial cells using an immunofluorescence-based assay to visualize viral capsids and the associated cellular components. In contrast to infectivity or reporter assays, this method does not rely on the expression of any viral and reporter genes, but instead directly tracks the accumulation of individual viral particles at the nuclear membrane as an indicator of successful viral entry and trafficking in cells. Inhibitors of endosomal acidification reduced both the percentage of nuclei with viral particles and the total number of viral particles docking at the perinuclear region, indicating endocytosis, rather than plasma membrane fusion, as the primary route for KSHV entry into endothelial cells. Accordingly, a viral envelope protein was only detected on internalized KSHV particles at the early but not late stage of infection. Inhibitors of clathrin- but not caveolae/lipid raft-mediated endocytosis blocked KSHV entry, indicating that clathrin-mediated endocytosis is the major route of KSHV entry into endothelial cells. KSHV particles were colocalized not only with markers of early and recycling endosomes, and lysosomes, but also with actin filaments at the early time points of infection. Consistent with these observations, transferrin, which enters cells by clathrin-mediated endocytosis, was found to be associated with actin filaments together with early and recycling endosomes, and to a lesser degree, with late endosomes and lysosomes. KSHV infection induced dynamic actin cytoskeleton rearrangements. Disruption of the actin cytoskeleton and inhibition of regulators of actin nucleation such as Rho GTPases and Arp2/3 complex profoundly blocked KSHV entry and trafficking. Together, these results indicate an important role for actin dynamics in the internalization and endosomal sorting/trafficking of KSHV and clathrin-mediated endocytosis in endothelial cells. 相似文献
15.
Agnieszka Galińska-Rakoczy Hanna Strzelecka-Go?aszewska 《Journal of molecular biology》2009,387(4):869-3927
The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N′-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of “upper dimers” (UD) characteristic of F-actin. Here we have used 90° light scattering, electron microscopy, and N,N′-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of “proper” interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed. 相似文献
16.
Taro Q. P. Noguchi Masatoshi Morimatsu Atsuko H. Iwane Toshio Yanagida Taro Q. P. Uyeda 《PloS one》2015,10(5)
The structural dynamics of actin, including the tilting motion between the small and large domains, are essential for proper interactions with actin-binding proteins. Gly146 is situated at the hinge between the two domains, and we previously showed that a G146V mutation leads to severe motility defects in skeletal myosin but has no effect on motility of myosin V. The present study tested the hypothesis that G146V mutation impaired rotation between the two domains, leading to such functional defects. First, our study showed that depolymerization of G146V filaments was slower than that of wild-type filaments. This result is consistent with the distinction of structural states of G146V filaments from those of the wild type, considering the recent report that stabilization of actin filaments involves rotation of the two domains. Next, we measured intramolecular FRET efficiencies between two fluorophores in the two domains with or without skeletal muscle heavy meromyosin or the heavy meromyosin equivalent of myosin V in the presence of ATP. Single-molecule FRET measurements showed that the conformations of actin subunits of control and G146V actin filaments were different in the presence of skeletal muscle heavy meromyosin. This altered conformation of G146V subunits may lead to motility defects in myosin II. In contrast, distributions of FRET efficiencies of control and G146V subunits were similar in the presence of myosin V, consistent with the lack of motility defects in G146V actin with myosin V. The distribution of FRET efficiencies in the presence of myosin V was different from that in the presence of skeletal muscle heavy meromyosin, implying that the roles of actin conformation in myosin motility depend on the type of myosin. 相似文献
17.
The organization of filamentous actin (F-actin) in the synaptic pedicle of depolarizing bipolar cells from the goldfish retina was studied using fluorescently labeled phalloidin. The amount of F-actin in the synaptic pedicle relative to the cell body increased from a ratio of 1.6 ± 0.1 in the dark to 2.1 ± 0.1 after exposure to light. Light also caused the retraction of spinules and processes elaborated by the synaptic pedicle in the dark.Isolated bipolar cells were used to characterize the factors affecting the actin cytoskeleton. When the electrical effect of light was mimicked by depolarization in 50 mM K+, the actin network in the synaptic pedicle extended up to 2.5 μm from the plasma membrane. Formation of F-actin occurred on the time scale of minutes and required Ca2+ influx through L-type Ca2+ channels. Phorbol esters that activate protein kinase C (PKC) accelerated growth of F-actin. Agents that inhibit PKC hindered F-actin growth in response to Ca2+ influx and accelerated F-actin breakdown on removal of Ca2+.To test whether activity-dependent changes in the organization of F-actin might regulate exocytosis or endocytosis, vesicles were labeled with the fluorescent membrane marker FM1-43. Disruption of F-actin with cytochalasin D did not affect the continuous cycle of exocytosis and endocytosis that was stimulated by maintained depolarization, nor the spatial distribution of recycled vesicles within the synaptic terminal. We suggest that the actions of Ca2+ and PKC on the organization of F-actin regulate the morphology of the synaptic pedicle under varying light conditions. 相似文献
18.