首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates complex dynamics of a predator–prey interaction model that incorporates: (a) an Allee effect in prey; (b) the Michaelis–Menten type functional response between prey and predator; and (c) diffusion in both prey and predator. We provide rigorous mathematical results of the proposed model including: (1) the stability of non-negative constant steady states; (2) sufficient conditions that lead to Hopf/Turing bifurcations; (3) a prior estimates of positive steady states; (4) the non-existence and existence of non-constant positive steady states when the model is under zero-flux boundary condition. We also perform completed analysis of the corresponding ODE model to obtain a better understanding on effects of diffusion on the stability. Our analytical results show that the small values of the ratio of the prey's diffusion rate to the predator's diffusion rate are more likely to destabilize the system, thus generate Hopf-bifurcation and Turing instability that can lead to different spatial patterns. Through numerical simulations, we observe that our model, with or without Allee effect, can exhibit extremely rich pattern formations that include but not limit to strips, spotted patterns, symmetric patterns. In addition, the strength of Allee effects also plays an important role in generating distinct spatial patterns.  相似文献   

2.

Many ecological systems show striking non-homogeneous population distributions. Diffusion-driven instabilities are commonly studied as mechanisms of pattern formation in many fields of biology but only rarely in ecology, in part because some of the conditions seem quite restrictive for ecological systems. Seasonal variation is ubiquitous in temperate ecosystems, yet its effect on pattern formation has not yet been explored. We formulate and analyze an impulsive reaction–diffusion system for a resource and its consumer in a two-season environment. While the resource grows throughout the ‘summer’ season, the consumer reproduces only once per year. We derive conditions for diffusion-driven instability in the system, and we show that pattern formation is possible with a Beddington–DeAngelis functional response. More importantly, we find that a low overwinter survival probability for the resource enhances the propensity for pattern formation: diffusion-driven instability occurs even when the diffusion rates of prey and predator are comparable (although not when they are equal).

  相似文献   

3.
An individual-based model describing predator–prey interactions within a closed rectangular habitat was developed to study how different assumptions about the individual movements lead to the emergence at the population level of various kinds of prey- and predator-dependence in the spatially aggregated trophic function.In addition to random walk, both species are capable of directional movement, i.e., the model accounts for the predator prey-taxis and evasion of predators by prey individuals. The taxis stimulus of each species is the odour of the other species, which is distributed continuously in space. Spatial behaviour of individuals is determined by the specific response to the odour gradient and the tendency to maintain the taxis velocity.In order to facilitate the assessment of the trophic function, the model allows removing the effect of demographic density variations on the predator ration, keeping population sizes constant.Analyzing the dependence of the trophic function with the average predator density, we found that, depending on the intensity of taxis, the predator population exhibits various degrees of interference, from very low to very high values. In particular, a moderate taxis generates distinct levels of interference including the ratio-dependent case. The letter maximizes the average consumption rate.A new generalized function containing ratio-dependence and prey-dependence as special cases, at high and low population abundances, is suggested. This trophic function fits the simulated data better than the Hassell–Varley–Holling expression does.  相似文献   

4.
We extend the aggregation model from Fetecau (2011) by adding a field of vision to individuals and by including a second species. The two species, assumed to have a predator–prey relationship, have dynamics governed by nonlocal kinetic equations that include advection and turning. The latter is the main mechanism for aggregation and orientation, which results from interactions among individuals of the same species as well as predator–prey relationships. We illustrate numerically a diverse set of predator–prey behaviors that can be captured by this model. We show that a prey’s escape outcome depends on the social interactions between its group members, the prey’s field of vision and the sophistication of the predator’s hunting strategies.  相似文献   

5.
In this paper we explore how the time delay induced Hopf-bifurcation interacts with Turing instability to determine the resulting spatial patterns. For this study, we consider a delayed prey–predator model with Holling type-II functional response and intra-specific competition among the predators. Analytical criteria for the delay induced Hopf-bifurcation and for the delayed spatio-temporal model are provided with numerical example to validate the analytical results. Exhaustive numerical simulation reveals the appearance of three types of stationary patterns, cold spot, labyrinthine, mixture of stripe-spot and two non-stationary patterns, quasi-periodic and spatio-temporal chaotic patterns. The qualitative features of the patterns for the non-delayed and the delayed spatio-temporal model are the same but their occurrence is solely controlled by the temporal parameters, rate of diffusivity and magnitude of the time delay. It is evident that the magnitude of time delay parameter beyond the Hopf-bifurcation threshold mostly produces spatio-temporal chaotic patterns.  相似文献   

6.
Parametric analysis of the ratio-dependent predator–prey model   总被引:3,自引:0,他引:3  
We present a complete parametric analysis of stability properties and dynamic regimes of an ODE model in which the functional response is a function of the ratio of prey and predator abundances. We show the existence of eight qualitatively different types of system behaviors realized for various parameter values. In particular, there exist areas of coexistence (which may be steady or oscillating), areas in which both populations become extinct, and areas of "conditional coexistence" depending on the initial values. One of the main mathematical features of ratio-dependent models, distinguishing this class from other predator-prey models, is that the Origin is a complicated equilibrium point, whose characteristics crucially determine the main properties of the model. This is the first demonstration of this phenomenon in an ecological model. The model is investigated with methods of the qualitative theory of ODEs and the theory of bifurcations. The biological relevance of the mathematical results is discussed both regarding conservation issues (for which coexistence is desired) and biological control (for which extinction is desired).  相似文献   

7.
The emergence of spatiotemporal patterns in the distribution of species is one of the most striking phenomena in ecology and nonlinear science. Since it is known that spatial inhomogeneities can significantly affect the dynamics of ecological populations, in the present paper we investigate the impact of environmental variability on the formation of patterns in a spatially extended predator–prey model. In particular, we utilize a predator–prey system with a Holling III functional response and introduce random spatial variations of the kinetic parameter signifying the intrinsic growth rate of the prey, reflecting the impact of a heterogeneous environment. Our results reveal that in the proximity of the Hopf bifurcation environmental variability is able to provoke pattern formation, whereby the coherence of the patterns exhibits a resonance-like dependence on the variability strength. Furthermore, we show that the phenomenon can only be observed if the spatial heterogeneities exhibit large enough regions with high growth rates of the prey. Our findings thus indicate that variability could be an essential pattern formation mechanism of the populations.  相似文献   

8.

We consider a modified Holling-type II predator–prey model, based on the premise that the search rate of predators is dependent on the prey density, rather than constant. A complete analysis of the global behavior of the model is presented, and shows that the model exhibits a dichotomy similar to the classical Holling-type II model: either the coexistence steady state is globally stable; or it is unstable, and then a unique, globally stable limit cycle exists. We discuss the similarities, but also important differences between our model and the Holling-type II model. The main differences are that: 1. The paradox of enrichment which always occurs in the Holling-type II model, does not always occur here, and 2. Even when the paradox of enrichment occurs, predators can adapt by lowering their search rate, and effectively stabilize the system.

  相似文献   

9.
Numerous formulations with the same mathematical properties can be relevant to model a biological process. Different formulations can predict different model dynamics like equilibrium vs. oscillations even if they are quantitatively close (structural sensitivity). The question we address in this paper is: does the choice of a formulation affect predictions on the number of stable states? We focus on a predator–prey model with predator competition that exhibits multiple stable states. A bifurcation analysis is realized with respect to prey carrying capacity and species body mass ratio within range of values found in food web models. Bifurcation diagrams built for two type-II functional responses are different in two ways. First, the kind of stable state (equilibrium vs. oscillations) is different for 26.0–49.4% of the parameter values, depending on the parameter space investigated. Using generalized modelling, we highlight the role of functional response slope in this difference. Secondly, the number of stable states is higher with Ivlev's functional response for 0.1–14.3% of the parameter values. These two changes interact to create different model predictions if a parameter value or a state variable is altered. In these two examples of disturbance, Holling's disc equation predicts a higher system resilience. Indeed, Ivlev's functional response predicts that disturbance may trap the system into an alternative stable state that can be escaped from only by a larger alteration (hysteresis phenomena). Two questions arise from this work: (i) how much complex ecological models can be affected by this sensitivity to model formulation? and (ii) how to deal with these uncertainties in model predictions?  相似文献   

10.
Stochastic models sometimes behave qualitatively differently from their deterministic analogues. We explore the implications of this in ecosystems that shift suddenly from one state to another. This phenomenon is usually studied through deterministic models with multiple stable equilibria under a single set of conditions, with stability defined through linear stability analysis. However, in stochastic systems, some unstable states can trap stochastic dynamics for long intervals, essentially masquerading as additional stable states. Using a predator–prey model, we demonstrate that this effect is sufficient to make a stochastic system with one stable state exhibit the same characteristics as an analogous system with alternative stable states. Although this result is surprising with respect to how stability is defined by standard analyses, we show that it is well-anticipated by an alternative approach based on the system's “quasi-potential.” Broadly, understanding the risk of sudden state shifts will require a more holistic understanding of stability in stochastic systems.  相似文献   

11.
In this paper, first we consider the global dynamics of a ratio-dependent predator–prey model with density dependent death rate for the predator species. Analytical conditions for local bifurcation and numerical investigations to identify the global bifurcations help us to prepare a complete bifurcation diagram for the concerned model. All possible phase portraits related to the stability and instability of the coexisting equilibria are also presented which are helpful to understand the global behaviour of the system around the coexisting steady-states. Next we extend the temporal model to a spatiotemporal model by incorporating diffusion terms in order to investigate the varieties of stationary and non-stationary spatial patterns generated to understand the effect of random movement of both the species within their two-dimensional habitat. We present the analytical results for the existence of globally stable homogeneous steady-state and non-existence of non-constant stationary states. Turing bifurcation diagram is prepared in two dimensional parametric space along with the identification of various spatial patterns produced by the model for parameter values inside the Turing domain. Extensive numerical simulations are performed for better understanding of the spatiotemporal dynamics. This work is an attempt to make a bridge between the theoretical results for the spatiotemporal model of interacting population and the spatial patterns obtained through numerical simulations for parameters within Turing and Turing–Hopf domain.  相似文献   

12.
The existence and implications of alternative stable states in ecological systems have been investigated extensively within deterministic models. However, it is known that natural systems are undeniably subject to random fluctuations, arising from either environmental variability or internal effects. Thus, in this paper, we study the role of noise on the pattern formation of a spatial predator–prey model with Allee effect. The obtained results show that the spatially extended system exhibits rich dynamic behavior. More specifically, the stationary pattern can be induced to be a stable target wave when the noise intensity is small. As the noise intensity is increased, patchy invasion emerges. These results indicate that the dynamic behavior of predator–prey models may be partly due to stochastic factors instead of deterministic factors, which may also help us to understand the effects arising from the undeniable susceptibility to random fluctuations of real ecosystems.  相似文献   

13.
We propose a variant of the discrete Lotka–Volterra model for predator–prey interactions. A detailed stability and numerical analysis of the model are presented to explore the long time behaviour as each of the control parameter is varied independently. We show how the condition for survival of the predator depends on the natural death rate of predator and the efficiency of predation. The model is found to support different dynamical regimes asymptotically including predator extinction, stable fixed point and limit cycle attractors for co-existence of predator and prey and more complex dynamics involving chaotic attractors. We are able to locate exactly the domain of chaos in the parameter plane using a dimensional analysis.  相似文献   

14.
《Ecological Complexity》2007,4(4):223-233
An excitable model of fast phytoplankton and slow zooplankton dynamics is considered for the case of lysogenic viral infection of the phytoplankton population. The phytoplankton population is split into a susceptible (S) and an infected (I) part. Both parts grow logistically, limited by a common carrying capacity. Zooplankton (Z) is grazing on susceptibles and infected, following a Holling-type III functional response. The local analysis of the SIZ differential equations yields a number of stationary and/or oscillatory regimes and their combinations. Correspondingly interesting is the behaviour under multiplicative noise, modelled by stochastic differential equations. The external noise can enhance the survival of susceptibles and infected, respectively, that would go extinct in a deterministic environment. In the parameter range of excitability, noise can induce prey–predator oscillations and coherence resonance (CR). In the spatially extended case, synchronized global oscillations can be observed for medium noise intensities. Higher values of noise give rise to the formation of stationary spatial patterns.  相似文献   

15.
Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator–prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how the interference among predators affects the dynamics and structure of the predator–prey community. We perform a detailed numerical bifurcation analysis and find an unusually large variety of complex dynamics, such as, bistability, torus and chaos, in the presence of predators. We show that, depending on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice of predators deeply influence the interference among predators, thus before applying predators to control disease in prey populations or applying predator control strategy for wildlife management, it is essential to carefully investigate how these predators interact with each other in that specific habitat; otherwise it may lead to ecological disaster.  相似文献   

16.
 Lotka–Volterra equations are considered a dynamical game, where the phenotypes of the predator and of the prey can vary. This differs from the usual procedure of specifying as a priori laws according to which strategies are supposed to change. The question at stake is the survival of each of the species, instead of the maximization of a given pay-off by each player, as it is commonly discussed in games. The predator needs the prey, while the prey can survive without the predator. These obvious and simplistic constraints are enough to shape the regulation of the system: notably, the largest closed set of initial conditions can be delineated, from which there exists at least one evolutionary path where the population can avoid extinction forever. To these so-called viable trajectories, viable strategies are associated, respectively for the prey or for the predator. A coexistence set can then be defined. Within this set and outside the boundary, strategies can vary arbitrarily within given bounds while remaining viable, whereas on the boundary, only specific strategies can guarantee the viability of the system. Thus, the largest set can be determined, outside of which strategies will never be flexible enough to avoid extinction. Received 2 May 1995; received in revised form 15 August 1995  相似文献   

17.
The role of individual behavioral variation in community dynamics was studied. Behavioral variation in this study does not refer to differences in average responses (e.g., average response between presence and absence of antipredator behavior). Rather it refers to the variation around the average response that is not explained by trivial experimental treatments. First, the effect of behavioral variation was examined based on Jensen’s inequality. In cases of commonly used modeling framework with type II functional response, neglecting behavioral variation (a component of encounter rate) causes overestimation of predation effects. The effect of this bias on community processes was examined by incorporating the behavioral variation in a commonly used consumer-resource model (Rosenzweig–MacArthur model). How such a consideration affects a model prediction (paradox of enrichment) was examined. The inclusion of behavioral variation can both quantitatively and qualitatively alter the model characteristics. Behavioral variation can substantially increase the stability of the community with respect to enrichment.  相似文献   

18.
A spatial version of the predator–prey model with Holling III functional response, which includes some important factors such as external periodic forces, noise, and diffusion processes is investigated. For the model only with diffusion, it exhibits spiral waves in the two-dimensional space. However, combined with noise, it has the feature of chaotic patterns. Moreover, the oscillations become more obvious when the noise intensity is increased. Furthermore, the spatially extended system with external periodic forces and noise exhibits a resonant pattern and frequency-locking phenomena. These results may help us to understand the effects arising from the undeniable susceptibility to random fluctuations in the real ecosystems.  相似文献   

19.
Many species possess damage-released chemical alarm cues that function in alerting nearby individuals to a predator attack. One hypothesis for the evolution and/or maintenance of such cues is the Predator Attraction Hypothesis, where predators, rather than prey, are the “intended” recipients of these cues. If a predator attack attracts additional predators, these secondary predators might interfere with the predation event, providing the prey with a better chance to escape. In this study, we conducted two experiments to explore this hypothesis in an amphibian predator/prey system. In Experiment 1, we found that tiger salamanders (Ambystoma mavortium) showed a foraging attraction to chemical cues from wood frog (Lithobates sylvaticus) tadpoles. Salamanders that were experienced with tadpole prey, in particular, were strongly attracted to tadpole alarm cues. In Experiment 2, we observed experimental encounters between a tadpole and either one or two salamanders. The presence of the second predator caused salamanders to increase attack speed at the cost of decreased attack accuracy (i.e., increasing the probability that the tadpole would escape attacks). We also found that the mere presence of visual and chemical cues from a second predator did not affect this speed/accuracy trade-off but did cause enough of a distraction to increase tadpole survival. Thus, our findings are consistent with the Predator Attraction Hypothesis for the evolution and/or maintenance of alarm cues.  相似文献   

20.
The dynamics of a predator–prey system are studied, with a comparison of discrete and continuous strategy spaces. For a \(2 \times 2\) system, the average strategies used in the discrete and continuous case are shown to be the same. It is further shown that the inclusion of constant prey switching in the discrete case can have a stabilising effect and reduce the number of available predator types through extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号