首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Liver X receptors (LXRs) are nuclear hormone receptors that regulate cholesterol and fatty acid metabolism in liver tissue and in macrophages. Although LXR activation enhances lipogenesis, it is not well understood whether LXRs are involved in adipocyte differentiation. Here, we show that LXR activation stimulated the execution of adipogenesis, as determined by lipid droplet accumulation and adipocyte-specific gene expression in vivo and in vitro. In adipocytes, LXR activation with T0901317 primarily enhanced the expression of lipogenic genes such as the ADD1/SREBP1c and FAS genes and substantially increased the expression of the adipocyte-specific genes encoding PPARγ (peroxisome proliferator-activated receptor γ) and aP2. Administration of the LXR agonist T0901317 to lean mice promoted the expression of most lipogenic and adipogenic genes in fat and liver tissues. It is of interest that the PPARγ gene is a novel target gene of LXR, since the PPARγ promoter contains the conserved binding site of LXR and was transactivated by the expression of LXRα. Moreover, activated LXRα exhibited an increase of DNA binding to its target gene promoters, such as ADD1/SREBP1c and PPARγ, which appeared to be closely associated with hyperacetylation of histone H3 in the promoter regions of those genes. Furthermore, the suppression of LXRα by small interfering RNA attenuated adipocyte differentiation. Taken together, these results suggest that LXR plays a role in the execution of adipocyte differentiation by regulation of lipogenesis and adipocyte-specific gene expression.  相似文献   

4.
5.
Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). PGC-1α enhances lipid oxidation and thereby provides energy for sustained muscle contraction. Its potential implication in promoting muscle refueling remains unresolved, however. Here, we investigated a possible role of elevated PGC-1α levels in skeletal muscle lipogenesis in vivo and the molecular mechanisms that underlie PGC-1α-mediated de novo lipogenesis. To this end, we studied transgenic mice with physiological overexpression of PGC-1α and human muscle biopsies pre- and post-exercise. We demonstrate that PGC-1α enhances lipogenesis in skeletal muscle through liver X receptor α-dependent activation of the fatty acid synthase (FAS) promoter and by increasing FAS activity. Using chromatin immunoprecipitation, we establish a direct interaction between PGC-1α and the liver X receptor-responsive element in the FAS promoter. Moreover, we show for the first time that increased glucose uptake and activation of the pentose phosphate pathway provide substrates for RNA synthesis and cofactors for de novo lipogenesis. Similarly, we observed increased lipogenesis and lipid levels in human muscle biopsies that were obtained post-exercise. Our findings suggest that PGC-1α coordinates lipogenesis, intramyocellular lipid accumulation, and substrate oxidation in exercised skeletal muscle in vivo.  相似文献   

6.
7.
8.
AngII (angiotensin II)-induced excessive ROS (reactive oxygen species) generation and proliferation of VSMCs (vascular smooth muscle cells) is a critical contributor to the pathogenesis of atherosclerosis. PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-1α] is involved in the regulation of ROS generation, VSMC proliferation and energy metabolism. The aim of the present study was to investigate whether PGC-1α mediates AngII-induced ROS generation and VSMC hyperplasia. Our results showed that the protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. Overexpression of PGC-1α inhibited AngII-induced proliferation and migration, ROS generation and NADPH oxidase activity in VSMCs. Conversely, Ad-shPGC-1α (adenovirus-mediated PGC-1α-specific shRNA) led to the opposite effects. Furthermore, the stimulatory effect of Ad-shPGC-1α on VSMC proliferation was significantly attenuated by antioxidant and NADPH oxidase inhibitors. Analysis of several key subunits of NADPH oxidase (Rac1, p22phox, p40phox, p47phox and p67phox) and mitochondrial ROS revealed that these mechanisms were not responsible for the observed effects of PGC-1α. However, we found that overexpression of PGC-1α promoted NOX1 degradation through the proteasome degradation pathway under AngII stimulation and consequently attenuated NOX1 (NADPH oxidase 1) expression. These alterations underlie the inhibitory effect of PGC-1α on NADPH oxidase activity. Our data support a critical role for PGC-1α in the regulation of proliferation and migration of VSMCs, and provide a useful strategy to protect vessels against atherosclerosis.  相似文献   

9.
10.
11.
Hemistepsin A (HsA) is a guaianolide sesquiterpene lactone that inhibits hepatitis and liver fibrosis. We evaluated the effects of HsA on liver X receptor (LXR)-mediated hepatic lipogenesis in vitro and in vivo. Up to 10 μM, HsA did not affect the viability of HepG2 and Huh7 cells. Pretreatment with 5-10 μM HsA significantly decreased the luciferase activity of the LXR response element, which was transactivated by T0901317, GW 3965, and LXRα/retinoid X receptor α overexpression. In addition, it significantly inhibited the mRNA expression of LXRα in HepG2 and Huh7 cells. It also suppressed the expression of sterol regulatory element-binding protein-1c and lipogenic genes and reduced the triglyceride accumulation triggered by T0901317. Intraperitoneal injection of HsA (5 and 10 mg/kg) in mice significantly alleviated the T0901317-mediated increases in hepatocyte diameter and the percentage of regions in hepatic parenchyma occupied by lipid droplets. Furthermore, HsA significantly attenuated hepatic triglyceride accumulation by restoring the impaired expression of LXRα-dependent lipogenic genes caused by T0901317. Therefore, based on its inhibition of the LXRα-dependent signaling pathway, HsA has prophylactic potential for steatosis.  相似文献   

12.
13.
14.
15.
16.
17.
Acat2 [gene name: sterol O-acyltransferase 2 (SOAT2)] esterifies cholesterol in enterocytes and hepatocytes. This study aims to identify repressor elements in the human SOAT2 promoter and evaluate their in vivo relevance. We identified TG-interacting factor 1 (Tgif1) to function as an important repressor of SOAT2. Tgif1 could also block the induction of the SOAT2 promoter activity by hepatocyte nuclear factor 1α and 4α. Women have ∼30% higher hepatic TGIF1 mRNA compared with men. Depletion of Tgif1 in mice increased the hepatic Soat2 expression and resulted in higher hepatic lipid accumulation and plasma cholesterol levels. Tgif1 is a new player in human cholesterol metabolism.  相似文献   

18.
19.
20.
Excess nitric oxide (NO) deregulates cholesterol metabolism in macrophage foam cells, yet the underlying molecular mechanism is incompletely understood. To investigate the mechanism, we found that in macrophages, treatment with NO donors S-nitroso-N-acetyl-D,L-penicillamine (SNAP) or diethylenetriamine/nitric oxide induced LXRα degradation and reduced the expression of the downstream target of LXRα, ATP-binding cassette transporter A1 (ABCA1), and cholesterol efflux. In addition, SNAP induced calcium (Ca2+) influx into cells, increased calpain activity and promoted the formation of calpain-LXRα complex. Pharmacological inhibition of calpain activity reversed the SNAP-induced degradation of LXRα, down-regulation of ABCA1 and impairment of cholesterol efflux in macrophages. SNAP increased the formation of calpain-LXRα complex in a Pro-Glu-Ser-Thr (PEST) motif-dependent manner. Truncation of the PEST motif in LXRα abolished the calpain-dependent proteolysis. Removal of extracellular Ca2+ by EGTA or pharmacological inhibition of TRPV1 channel activity diminished SNAP-induced increase in intracellular Ca2+, calpain activation, LXRα degradation, ABCA1 down-regulation and impaired cholesterol efflux. In conclusion, excess NO may activate calpain via TRPV1-Ca2+ signaling and promote the recognition of calpain in the PEST motif of LXRα, thereby leading to degradation of LXRα and, ultimately, downregulated ABCA1 expression and impaired ABCA1-dependent cholesterol efflux in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号