首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and characterization of local molecules directing the differentiation of chondrocytes to either transient or permanent cartilage are major issues in cartilage biology. Here, we found CCN family protein 3 (CCN3) was abundantly produced in rat developing epiphyseal cartilage. Evaluations in vitro showed that CCN3 repressed epiphyseal chondrocyte proliferation, while promoting matrix production in multiple assays performed. Furthermore, CCN3 enhanced the articular chondrocytic phenotype; whereas it repressed the one representing endochondral ossification. Additionally, the phenotype of growth plate chondrocytes and chondrogenic progenitors also appeared to be affected by CCN3 in a similar manner. These findings suggest a significant role of CCN3 in inducing chondrocytes to articular ones during joint formation.  相似文献   

2.
Osteopontin, a sulfated phosphoprotein with cell binding and matrix binding properties, is expressed in a variety of tissues. In the embryonic growth plate, osteopontin expression was found in bone-forming cells and in hypertrophic chondrocytes. In this study, the expression of osteopontin was analyzed in normal and osteoarthritic human knee cartilage. Immunohistochemistry, using a monoclonal anti-osteopontin antibody was negative on normal cartilage. These results were confirmed in Western blot experiments, using partially purified extracts of normal knee cartilage. No osteopontin gene expression was observed in chondrocytes of adult healthy cartilage, however, in the subchondral bone plate, expression of osteopontin mRNA was detected in the osteoblasts. In cartilage from patients with osteoarthritis, osteopontin could be detected by immunohistochemistry, Western blot analysis, in situ hybridization, and Northern blot analysis. A qualitative analysis indicated that osteopontin protein deposition and mRNA expression increase with the severity of the osteoarthritic lesions and the disintegration of the cartilaginous matrix. Osteopontin expression in the cartilage was limited to the chondrocytes of the upper deep zone, showing cellular and territorial deposition. The strongest osteopontin detection was found in deep zone chondrocytes and in clusters of proliferating chondrocytes from samples with severe osteoarthritic lesions. These data show the expression of osteopontin in adult human osteoarthritic chondrocytes, suggesting that chondrocyte differentiation and the expression of differentiation markers in osteoarthritic cartilage resembles that of epiphyseal growth plate chondrocytes.  相似文献   

3.
Characterization of dedifferentiated chondrocytes (DECs) and mesenchymal stem cells capable of differentiating into chondrocytes is of biological and clinical interest. We isolated DECs and bone marrow stromal cells (BMSCs), H4-1 and H3-4, and demonstrated that the cells started to produce extracellular matrices, such as type II collagen and aggrecan, at an early stage of chondrosphere formation. Furthermore, cDNA sequencing of cDNA libraries constricted by the oligocapping method was performed to analyze difference in mRNA expression profiling between DECs and marrow stromal cells. Upon redifferentiation of DECs, cartilage-related extracellular matrix genes, such as those encoding leucine-rich small proteoglycans, cartilage oligomeric matrix protein, and chitinase 3-like 1 (cartilage glycoprotein-39), were highly expressed. Growth factors such as FGF7 and CTGF were detected at a high frequency in the growth stage of monolayer stromal cultures. By combining the expression profile and flow cytometry, we demonstrated that isolated stromal cells, defined by CD34(-), c-kit(-), and CD140alpha(- or low), have chondrogenic potential. The newly established human mesenchymal cells with expression profiling provide a powerful model for a study of chondrogenic differentiation and further understanding of cartilage regeneration in the means of redifferentiated DECs and BMSCs.  相似文献   

4.
Sonic hedgehog (Shh) is a key signal protein in early embryological patterning of limb bud development. Its analog, Indian hedgehog (Ihh), primarily expressed during early cartilage development in prehypertrophic chondrocytes, regulates proliferation and suppresses terminal differentiation of postnatal growth plate (GP) chondrocytes. We report here for the first time that both Shh and Ihh mRNA are expressed in the GP of rapidly growing 6-week-old broiler-strain chickens. They are also expressed in other tissues such as articular chondrocytes, kidney, and bone. In situ hybridization and RT-PCR analyses reveal Shh in all zones of the GP, with peak expression in late hypertrophy. Using primary cultures of GP chondrocytes in serum-containing medium, we followed the patterns of Shh and Ihh mRNA expression as the cultures matured and mineralized. We find a cyclical expression of both hedgehog genes during the early period of culture development between day 10 and 14; when one is elevated, the other tended to be suppressed, suggesting that the two hedgehogs may play complementary roles during GP development. Retinoic acid (RA), a powerful modulator of gene expression in cell differentiation, stimulates GP chondrocytes toward terminal differentiation, enhancing mineral formation. We find that RA strongly suppresses Ihh, but enhances expression of Shh in this system. While Ihh suppresses maturation of GP chondrocytes to hypertrophy, we hypothesize that Shh acts to push these cells toward hypertrophy.  相似文献   

5.
6.
The growth plate is an important target tissue for insulin-like growth factors (IGFs), but little is known about the regulation of the IGF system during the developmental sequence of chondrocytes. We therefore examined the expression profile of IGF system components in proliferating vs. differentiating growth plate chondrocytes by use of two cell culture models of the growth cartilage. In rat growth plate chondrocytes in primary culture, IGF-I expression increased twofold during the process of differentiation. IGF-binding protein-3 (IGFBP-3) expression showed a biphasic pattern of with a twofold increase at the onset of differentiation and a downregulation in late differentiating chondrocytes to 25% of baseline levels; the expression patterns of IGFBP-2, -4 and -6 were not dependent on the developmental stage. In IGF- and IGFBP-3-deficient RCJ3.1C5.18 (RCJ) mesenchymal chondrogenic cells, IGFBP-2 and -6 synthesis declined by 50% during differentiation. IGFBP-5 expression was markedly upregulated during the process of differentiation in both cell culture models. Although IGFBP-5 overexpression did not have an IGF-independent effect on RCJ cell differentiation, it promoted IGF-I-enhanced differentiation of these cells. A potential mechanism for this effect is the specific increase of Akt phosphorylation in IGFBP-5-overexpressing cells in the presence of IGF-I, indicating an increased activity of the phosphatidylinositol (PI) 3-kinase pathway. These data suggest that the developmental stage of the chondrocyte is an important determinant of IGF and IGFBP expression and imply a functional role for IGFBP-5 for upregulating IGF action during chondrocyte differentiation in vivo.  相似文献   

7.
The mouse embryonal carcinoma cell line ATDC5 provides an excellent model system for chondrogenesis in vitro. To understand better the molecular mechanisms of endochondral bone formation, we investigated gene expression profiles during the differentiation course of ATDC5 cells, using an in-house microarray harboring full-length-enriched cDNAs. For 28 days following chondrogenic induction, 507 genes were up- or down-regulated at least 1.5-fold. These genes were classified into five clusters based on their expression patterns. Genes for growth factor and cytokine pathways were significantly enriched in the cluster characterized by increases in expression during late stages of chondrocyte differentiation. mRNAs for decorin and osteoglycin, which have been shown to bind to transforming growth factors-beta and bone morphogenetic proteins, respectively, were found in this cluster and were detected in hypertrophic chondrocytes of developing mouse bones by in situ hybridization analysis. Taken together with assigned functions of individual genes in the cluster, interdigitated interaction between a number of intercellular signaling molecules is likely to take place in the late chondrogenic stage for autocrine and paracrine regulation among chondrocytes, as well as for chemoattraction and stimulation of progenitor cells of other lineages.  相似文献   

8.
Current approaches have focused on deriving ESCs differentiation into chondrocytes from a cell source of spontaneously formed intact mesoderm in EB formation, resulting in limited yield. Our study aimed at upregulating chondrogenic differentiation of murine ESCs by enhancing mesoderm formation. Specifically, culture of mESCs with conditioned medium from a human hepatocarcinoma cell line resulted in a cell population with a gene expression pattern similar to that of primitive streak/nascent mesoderm, including up-regulation of brachyury, goosecoid, nodal, and cripto. From this cell population, reducing the embryoid body formation time resulted in enhancement of chondrogenic differentiation as evidenced by larger Alcian blue-stained cartilage nodules, higher production of sulfated glycosaminoglycan matrix, the presence of well-organised type II collagen and type II collagen, aggrecan and sox-9 gene expression. In conclusion, we present here a new approach to the generation of chondrocytes from mESCs that enhances yields and, thus, could have widespread applications in cartilage tissue engineering.  相似文献   

9.
Treatment of common and debilitating degenerative cartilage diseases particularly osteoarthritis is a clinical challenge because of the limited capacity of the tissue for self‐repair. Because of their unlimited capacity for self‐renewal and ability to differentiate into multiple lineages, human embryonic stem cells (hESCs) are a potentially powerful tool for repair of cartilage defects. The primary objective of the present study was to develop culture systems and conditions that enable hESCs to directly and uniformly differentiate into the chondrogenic lineage without prior embryoid body (EB) formation, since the inherent cellular heterogeneity of EBs hinders obtaining homogeneous populations of chondrogenic cells that can be used for cartilage repair. To this end, we have subjected undifferentiated pluripotent hESCs to the high density micromass culture conditions we have extensively used to direct the differentiation of embryonic limb bud mesenchymal cells into chondrocytes. We report that micromass cultures of pluripotent hESCs undergo direct, rapid, progressive, and substantially uniform chondrogenic differentiation in the presence of BMP2 or a combination of BMP2 and TGF‐β1, signaling molecules that act in concert to regulate chondrogenesis in the developing limb. The gene expression profiles of hESC‐derived cultures harvested at various times during the progression of their differentiation has enabled us to identify cultures comprising cells in different phases of the chondrogenic lineage ranging from cultures just entering the lineage to well differentiated chondrocytes. Thus, we are poised to compare the abilities of hESC‐derived progenitors in different phases of the chondrogenic lineage for cartilage repair. J. Cell. Physiol. 224: 664–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
《The Journal of cell biology》1994,126(6):1611-1623
To elucidate the role of PTHrP in skeletal development, we examined the proximal tibial epiphysis and metaphysis of wild-type (PTHrP-normal) 18- 19-d-old fetal mice and of chondrodystrophic litter mates homozygous for a disrupted PTHrP allele generated via homologous recombination in embryonic stem cells (PTHrP-depleted). In the PTHrP-normal epiphysis, immunocytochemistry showed PTHrP to be localized in chondrocytes within the resting zone and at the junction between proliferative and hypertrophic zones. In PTHrP-depleted epiphyses, a diminished [3H]thymidine-labeling index was observed in the resting and proliferative zones accounting for reduced numbers of epiphyseal chondrocytes and for a thinner epiphyseal plate. In the mutant hypertrophic zone, enlarged chondrocytes were interspersed with clusters of cells that did not hypertrophy, but resembled resting or proliferative chondrocytes. Although the overall content of type II collagen in the epiphyseal plate was diminished, the lacunae of these non-hypertrophic chondrocytes did react for type II collagen. Moreover, cell membrane-associated chondroitin sulfate immunoreactivity was evident on these cells. Despite the presence of alkaline phosphatase activity on these nonhypertrophic chondrocytes, the adjacent cartilage matrix did not calcify and their persistence accounted for distorted chondrocyte columns and sporadic distribution of calcified cartilage. Consequently, in the metaphysis, bone deposited on the irregular and sparse scaffold of calcified cartilage and resulted in mixed spicules that did not parallel the longitudinal axis of the tibia and were, therefore, inappropriate for bone elongation. Thus, PTHrP appears to modulate both the proliferation and differentiation of chondrocytes and its absence alters the temporal and spatial sequence of epiphyseal cartilage development and of subsequent endochondral bone formation necessary for normal elongation of long bones.  相似文献   

11.
12.
We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression.  相似文献   

13.
Fracture healing in long bones is a sequential multistep cascade of hemostasis, transient inflammation, chemotaxis of progenitor cells, mitosis, differentiation of cartilage, and replacement with bone. This multistep cascade is orchestrated by cytokines and morphogens. Members of the interleukin (IL)-17 family, including IL-17B, have been identified in cartilage, but their expression during fracture healing is unknown. In this study, we determined the immunolocalization of cytokines IL-17A and IL-17B, along with the IL-17 receptor (IL-17R) and IL-17 receptor-like protein (IL-17RL), during the sequence of fracture repair in a standard model. The results were extended to developmental changes in the epiphyseal growth plate of long bones. Members of the IL-17 family were localized in chondrocytes in the fracture callus. Moreover, we found significant parallels to the localization of these cytokines and their receptors in chondrocytes during an endochondral differentiation program in the epiphyseal growth plate.  相似文献   

14.
15.
16.
The expression pattern for tissue transglutaminase (TG2) suggests that it regulates cartilage formation. We analyzed the role of TG2 in early stages of chondrogenesis using differentiating high-density cultures of mesenchymal cells from chicken limb bud as a model. We demonstrate that TG2 promotes cell differentiation towards a pre-hypertrophic stage without inducing precocious hypertrophic maturation. This finding, combined with distinctive up-regulation of extracellular TG2 in the pre-hypertrophic cartilage of the growth plate, indicates that TG2 is an autocrine regulator of chondrocyte differentiation. We also show that TG2 regulates synthesis of the cartilaginous glycosaminoglycan (GAG)-rich extracellular matrix. Elevated levels of TG2 down-regulate xylosyltransferase activity which mediates the key steps in chondroitin sulfate synthesis. On the contrary, inhibition of endogenous transglutaminase activity in differentiating chondrogenic micromasses results in increased GAG deposition and enhancement of early chondrogenic markers. Regulation of GAG synthesis by TG2 appears independent of TGF-β activity, which is a downstream mediator of the TG2 functions in some biological systems. Instead, our data suggest a major role for cAMP/PKA signaling in transmitting TG2 signals in early chondrogenic differentiation. In summary, we demonstrate that matrix synthesis and early stages of chondrogenic differentiation are regulated through a novel mechanism involving TG2-dependent inhibition of PKA. These findings further advance understanding of cartilage formation and disease, and contribute to cartilage bioengineering.  相似文献   

17.
18.
Endochondral ossification is a complex process involving the formation of cartilage and the subsequent replacement by mineralized bone. Although the proliferation and differentiation of chondrocytes are strictly regulated, the molecular mechanisms involved are not completely understood. Here, we show that a divergent-type homeobox gene, hematopoietically expressed homeobox gene (HEX), is expressed in mouse chondrogenic cell line ATDC5. The expression of Hex protein drastically increased during differentiation. The chondrogenic differentiation-enhanced expression of Hex protein was also observed in chondrocytes in the tibia of embryonic day 15.5 (E15.5) mouse embryos. The localization of Hex protein in the chondrocytes of the tibia changed in association with maturation; namely, there was Hex protein in the cytoplasm near the endoplasmic reticulum (ER) in resting chondrocytes, which moved to the nucleus in prehypertrophic chondrocytes, and thereafter entered the ER in hypertrophic chondrocytes. These results suggest Hex expression and subcellular localization are associated with chondrocyte maturation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号