首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Loss of environmental services provided by forests is a non‐linear process in Jambi Province, Sumatra, Indonesia. Intermediate‐intensity land‐use types in the form of complex agroforests have maintained global environmental benefits under a sustainable and profitable land use regime. Conversion to tree crop monocultures, however, poses a challenge to the environmental stakeholders and an opportunity from to stakeholders in the private economy. We quantified environmental indicators, as well as profitability and sustainability of a range of existing and possible production systems. Criteria and indicators were used at plot to landscape scales, taking into account local, national and global perspectives. Agronomic sustainability and profitability were assessed at plot level as they are of primarily local concern, while environmental services of forests, such as plant species and functional type richness, carbon stocks, greenhouse gas emissions, and trans‐boundary haze, which are of national and global concern, were assessed at landscape level. Quantitative trade‐offs and complementarities were analysed between global environmental benefits and local profitability. The current trend towards simplification of the complex agro‐ecosystems and inherent loss of environmental services of forests is driven by profitability. The sequence in which environmental services of forests are lost is: standing carbon stocks, biodiversity, and low or negative greenhouse gas emissions.  相似文献   

2.
The conservation of biodiversity has gained prominence in ecological research for the last decades. Conservation actions require a measure of biodiversity such as species richness, but its assessment is very difficult, even for small areas and therefore the search for surrogates (i.e. indicators) of biodiversity has emerged as an active research topic. We investigated the relationships between butterfly species richness and landscape structure and composition in two pine plantation sites in Southwest France. We assessed the correlation between butterfly species richness and a set of 15 landscape metrics computed for 18 land-uses at 10 different spatial scales. Spatial scales were accounted for by computing landscape metrics for circular buffers with radius ranging from 100 to 1000 m. The joint use of the Partial Least Squares Regression (PLSR) and a stepwise regression procedure revealed strong correlations between butterfly species richness and various landscape metrics in both study sites. The selected landscape metrics differed from one site to another and mostly involved measures of landscape fragmentation. We found a very strong effect of the spatial scale of investigation upon the perception of the landscape–butterfly richness relationship. Our main conclusions are that (i) certain landscape attributes can potentially serve as indicators for butterfly species richness at the landscape scale; (ii) future indicators of biodiversity based on landscape features should consider various spatial scales.  相似文献   

3.
Switzerland's governmental ‘Biodiversity Monitoring’ program is designed to produce factual information on the dynamics of biodiversity within the country for governmental agencies, politicians, and the general public. Monitoring a complex issue like biodiversity in order to give relevant and accurate messages to the general public and politicians within a politically relevant timescale and at moderate cost means focusing on few elements. Because relevant human impacts on biodiversity operate differently at different spatial scales, we need at least three different indicators to observe changes over time in local (‘within‐habitat’), landscape (‘habitat‐mosaic’), and macro‐scale (‘regional’) diversity. To keep things as simple as possible, we use species richness as an indicator for all three levels of diversity, just defining three different spatial scales (10 m2, 1 km2, regions, respectively). Each indicator is based on a number of taxonomic groups which have been selected mainly on the basis of costs and the availability of appropriate methods.  相似文献   

4.
Rethinking patch size and isolation effects: the habitat amount hypothesis   总被引:4,自引:0,他引:4  
I challenge (1) the assumption that habitat patches are natural units of measurement for species richness, and (2) the assumption of distinct effects of habitat patch size and isolation on species richness. I propose a simpler view of the relationship between habitat distribution and species richness, the ‘habitat amount hypothesis’, and I suggest ways of testing it. The habitat amount hypothesis posits that, for habitat patches in a matrix of non‐habitat, the patch size effect and the patch isolation effect are driven mainly by a single underlying process, the sample area effect. The hypothesis predicts that species richness in equal‐sized sample sites should increase with the total amount of habitat in the ‘local landscape’ of the sample site, where the local landscape is the area within an appropriate distance of the sample site. It also predicts that species richness in a sample site is independent of the area of the particular patch in which the sample site is located (its ‘local patch’), except insofar as the area of that patch contributes to the amount of habitat in the local landscape of the sample site. The habitat amount hypothesis replaces two predictor variables, patch size and isolation, with a single predictor variable, habitat amount, when species richness is analysed for equal‐sized sample sites rather than for unequal‐sized habitat patches. Studies to test the hypothesis should ensure that ‘habitat’ is correctly defined, and the spatial extent of the local landscape is appropriate, for the species group under consideration. If supported, the habitat amount hypothesis would mean that to predict the relationship between habitat distribution and species richness: (1) distinguishing between patch‐scale and landscape‐scale habitat effects is unnecessary; (2) distinguishing between patch size effects and patch isolation effects is unnecessary; (3) considering habitat configuration independent of habitat amount is unnecessary; and (4) delineating discrete habitat patches is unnecessary.  相似文献   

5.
The Austrian Forest Biodiversity Index: All in one   总被引:1,自引:0,他引:1  
Forest biodiversity cannot be measured and monitored directly. Indicators are needed to tackle this task and must be based on scientifically valid relationships concerning different levels of biodiversity. In addition, indicators must provide tangible goals for forest policy and other relevant stakeholders. Here, we propose a single aggregated measure – the Austrian Forest Biodiversity Index (AFBI) – which is composed of different indicator values being weighed depending on their significance for the maintenance of forest species richness and genetic diversity. The AFBI consists of nine state and four response indicators. Selection of state indicators was based on the general hypothesis that forests which mimic natural conditions or are characterised by structural elements of old-growth forests maintain a high number of forest dependent species and a high genetic richness therein. Among the response indicators we considered the establishment of natural forest reserves, genetic reserve forests, seed stands and seed orchards as most relevant. Proposed operational tools, especially for state indicators, are mainly based on the Austrian forest inventory. The sum of all weighted indicator measures is rescaled as a total score that may vary from 0 to 100, so that the AFBI is simple to communicate and straightforward to apply. The AFBI gives certain weight to genetic parameters which are often neglected in previous approaches.  相似文献   

6.
城市生物多样性分布格局研究进展   总被引:12,自引:8,他引:12  
城市生物多样性分布格局由自然生态环境和城市化过程所决定;其动态和机理与自然生态系统迥然不同.城市生物多样性为城市生态系统提供了诸多生态系统功能和服务,对改善城市环境、维持城市可持续发展有着重要的意义和作用.城市化过程深刻改变了城市的生物多样性分布格局,导致了诸如本地物种多样性降低、外来物种多样性增加、物种同质化等一系列问题.近年来,城市生物多样性受到学界高度关注,大量研究结果既回答了一些关键性问题,又提出了诸多新的论题和挑战.分析了当前城市生物多样性分布格局研究的若干热点问题,总结了影响城市生物多样性格局的主要因素,探讨了城市生物多样性格局研究方法的关键问题,指出了未来城市生物多样性研究的发展方向,特别强调了城市生物多样性的生态系统功能研究在未来城市生物多样性研究中的重要地位.  相似文献   

7.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

8.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

9.
The search for surrogates of changes in species richness and community structure in fragmented landscapes involves not only the selection of predictors, such as landscape metrics or environmental variables, but also the identification of the spatial scale that is most relevant to the taxa in question. However the heavily intercorrelated nature of many structural features in fragmented landscapes complicates analyses, and the wide variation in species responses prevents the identification of a general trend. In this study, we used a two-tiered hierarchical variation partitioning to identify the unique and shared effects of: 1 – changes in vegetation structure at the plot scale, patch structure (size and shape), and forest cover at the landscape scale; and 2 – variables within these scales; as predictors of species richness and species’ abundances of birds in a fragmented landscape of Atlantic Forest; with the goal of aiding to the development of biodiversity indicators. Birds were sampled with mist-nets with a constant effort of 680 net-h at each of 23 sites, which resulted in almost 2600 captures. At the community level, regression models showed that changes in plot, patch and landscape scale variables explained a large proportion of the variation in species richness, but results from variation partitioning showed that the intercorrelation among predictors was so high that the unique contribution of each was non-significant. Our results point to a relatively large unique effect of local and landscape scale variables at the community level, but we also show that results vary greatly depending on the trophic guild being analysed. At the species level, multiple scale models also presented high explanatory power, however, species responses were so varied that we could not detect a general trend. We conclude that there is no single ‘best’ scale that could function as a proxy for changes in bird communities because each species and functional guild is uniquely affected by the environment, and suggest that efforts should be focused on finding indicators that encompasses all scales and the needs of different taxa.  相似文献   

10.
This paper is an attempt to outline a protocol for animal diversity census and evaluation aimed for areas in view of landscape planning of territories of hundred square kilometres and more, that may work utilising different faunal groups and be anyway useful at various scales. Many papers are addressed to elaborate tools for landscape planning starting from biodiversity evaluation and butterflies are often utilised because of their sensitivity to landscape modifications. In this work, the biodiversity evaluation has been performed using three hierarchically linked landscape units at micro-, meso- and macroscale. Being species diversity values often inadequate to define the conservation interest of a landscape portion, more importance has been given to which species compose the species assemblages. A community vulnerability Index was coded and used for evaluating potential consequences of human disturbance on butterfly assemblages. Forty-four year samples were gained by visual census in the Sila Greca, Southern Italy, on an area of approximately 520 square kilometres. During 5 years work, 2,535 specimens and 94 species were recorded, equal to 75.8% of the whole Calabrian fauna. Four vulnerability levels have been established and used for mapping butterfly assemblage vulnerability in the area, starting from a vegetation map. Species richness was found somewhat contradictory at micro-scale, where the community vulnerability Index gives a sounder approach. S diversity gives a more reliable picture of naturalness at meso-scale, a level we identified with the “ecotope”. At this more “geomorphic” scale level, biological functions reflected by butterfly assemblages revealed to be clearly linked to seral processes. Similarity analysis results show that the ecotope species richness, here called “eta-diversity”, could be an useful measure of zoological landscape (faunation) potentialities.  相似文献   

11.
Functional diversity changes during tropical forest succession   总被引:1,自引:0,他引:1  
Functional diversity (FD) ‘those components of biodiversity that influence how an ecosystem operates or functions’ is a promising tool to assess the effect of biodiversity loss on ecosystem functioning. FD has received ample theoretical attention, but empirical studies are limited. We evaluate changes in species richness and FD during tropical secondary forest succession after shifting cultivation in Mexico. We also test whether species richness is a good predictor of FD. FD was calculated based on a combination of nine functional traits, and based on two individual traits important for primary production (specific leaf area) and carbon sequestration (wood density). Stand basal area was a good predictor of successional changes in diversity and FD, in contrast to fallow age. Incidence-based FD indices increased logarithmically with stand basal area, but FD weighted by species’ importance values lacked pattern with succession. Species richness and diversity are strong predictors of FD when all traits were considered; linear relationships indicate that all species are equally functionally complementary, suggesting there is little functional redundancy. In contrast, when FD was calculated for individual traits and weighted for abundances, species richness may underestimate FD.Selection of functional trait(s) critically determines FD, with large consequences for studies relating biodiversity to ecosystem functioning. Careful consideration of the traits required to capture the ecosystem process of interest is thus essential.  相似文献   

12.
Since landscape attributes show different patterns at different spatial extents, it is fundamental to identify how the relation between landscape structure and plant species diversity at local scale varies with scale. Then, it is fundamental to assess the appropriate extent at which landscape factors affect plant species richness at the local scale. To investigate this relation, data on plant species richness of forest communities at plot scale were extracted from a large data set and landscape metrics were calculated around the same plots for a range of extents (250–3000 m). Then, multiple regression models and variance partitioning techniques were applied to assess the amount of variance explained by the landscape metrics on plant species richness for a range of extents. In general, we found that increasing extent of the surrounding landscape analyzed, improved the strength of relationship between the landscape metrics and the properties of plant communities at plot scale. The medium-large extent was most informative as it combined a decent total variance explained with high variance explained by the pure fractions of complexity, fragmentation and disturbance and the minimum of collinearity. In conclusion, we found that it is possible and beneficial to identify a specific extent, where the redundancy in the predictor variables is minimized and the explanatory power of the pure fractions (or single groups) maximized, when examining landscape structure effects on local plant species richness.  相似文献   

13.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

14.
The habitat amount hypothesis (HAH) predicts that species richness in a habitat site increases with the amount of habitat in the ‘local landscape’ defined by an appropriate distance around the site, with no distinct effects of the size of the habitat patch in which the site is located. It has been stated that a consequence of the HAH, if supported, would be that it is unnecessary to consider habitat configuration to predict or manage biodiversity patterns, and that conservation strategies should focus on habitat amount regardless of fragmentation. Here, I assume that the HAH holds and apply the HAH predictions to all habitat sites over entire landscapes that have the same amount of habitat but differ in habitat configuration. By doing so, I show that the HAH actually implies clearly negative effects of habitat fragmentation, and of other spatial configuration changes, on species richness in all or many of the habitat sites in the landscape, and that these habitat configuration effects are distinct from those of habitat amount in the landscape. I further show that, contrary to current interpretations, the HAH is compatible with a steeper slope of the species–area relationship for fragmented than for continuous habitat, and with higher species richness for a single large patch than for several small patches with the same total area (SLOSS). This suggests the need to revise the ways in which the HAH has been interpreted and can be actually tested. The misinterpretation of the HAH has arisen from confounding and overlooking the differences in the spatial scales involved: the individual habitat site at which the HAH gives predictions, the local landscape around an individual site and the landscapes or regions (with multiple habitat sites and different local landscapes) that need to be analysed and managed. The HAH has been erroneously viewed as negating or diminishing the relevance of fragmentation effects, while it actually supports the importance of habitat configuration for biodiversity. I conclude that, even in the cases where the HAH holds, habitat fragmentation and configuration are important for understanding and managing species distributions in the landscape.  相似文献   

15.
European landscapes have been shaped over the centuries by processes related to human land use, which are reflected in regionally distinct landscape patterns. Since landscape pattern has been linked to biodiversity and other ecological values of the landscapes, this paper explores landscape pattern as a tool for ecological sustainability assessments at the regional (Austrian Cultural Landscapes), national (Austria) and European (European Union + Norway, Switzerland) level with focus on agricultural landscapes. A set of landscape metrics served as a basis to assess naturalness and geometrisation of Austrian and European landscapes as a proxy for their sustainability. To achieve an accurate spatially explicit assessment, we applied a spatial reference framework consisting in units that are homogeneous in biophysical and socio-economic contexts, adapted the regional approach for its application at European level, and developed relative sustainability thresholds for the landscape metrics. The analyses revealed that several landscape metrics, particularly the “Number of Shape Characterising Points” showed a high correlation with the degree of naturalness. The sustainability map of Austria based on an ordinal regression model revealed well-known problem regions of ecological sustainability. At the European level, the relative deviation from the average pattern showed clearly the simplification processes in the landscapes. However, a better spatial resolution of land cover data would add to the refinement of pattern analysis in regions and therefore the assessment of sustainability. We recommend the combination of information of different scales for the formulation and implementation of sustainability policies.  相似文献   

16.
Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500‐m scale and patch isolation at the 100‐m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro‐ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss.  相似文献   

17.
18.
The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at ‘local’ and ‘landscape’ scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the ‘ancient forest species’), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.  相似文献   

19.
Andreas Kruess 《Ecography》2003,26(3):283-290
The effects of local habitat and large-scale landscape factors on species diversity and species interactions were studied using the insect community in stems of the creeping thistle Cirsium arvense . Thistle abundance was higher in fallows than in crop fields and field margins, with fallows providing 67% of thistle abundance within 15 study areas on a landscape scale. Species richness of the herbivores was positively related with thistle abundance, parasitoid species richness was influenced by habitat type and was positively correlated with herbivore species richness. The abundance of herbivores and parasitoids was affected by local factors such as habitat type and host abundance, but also by landscape factors such as the percentage of non-crop area and the isolation of habitats. The infestation rate caused by the agromyzid Melanagromyza aeneoventris was positively related to percent non-crop area, whereas the parasitism rate of this fly increased with increasing habitat diversity on the landscape scale. For these two interactions and for total herbivore abundance, a scale-dependency of the landscape effects was found. The results emphasize that biological diversity and ecological functions within a plant-insect community are not only affected by local habitat factors but also by large-scale landscape characteristics. Hence, to improve future agri-environmental schemes for biodiversity conservation and biological control large-scale landscape effects and their scale-dependency should be considered.  相似文献   

20.
Grasslands used to be vital landscape elements throughout Europe. Nowadays, the area of grasslands is dramatically reduced, especially in industrial countries. Grassland restoration is widely applied to increase the naturalness of the landscape and preserve biodiversity. We reviewed the most frequently used restoration techniques (spontaneous succession, sowing seed mixtures, transfer of plant material, topsoil removal and transfer) and techniques used to improve species richness (planting, grazing and mowing) to recover natural-like grasslands from ex-arable lands. We focus on the usefulness of methods in restoring biodiversity, their practical feasibility and costs. We conclude that the success of each technique depends on the site conditions, history, availability of propagules and/or donor sites, and on the budget and time available for restoration. Spontaneous succession can be an option for restoration when no rapid result is expected, and is likely to lead to the target in areas with high availability of propagules. Sowing low-diversity seed mixtures is recommended when we aim at to create basic grassland vegetation in large areas and/or in a short time. The compilation of high-diversity seed mixtures for large sites is rather difficult and expensive; thus, it may be applied rather on smaller areas. We recommend combining the two kinds of seed sowing methods by sowing low-diversity mixtures in a large area and high-diversity mixtures in small blocks to create species-rich source patches for the spontaneous colonization of nearby areas. When proper local hay sources are available, the restoration with plant material transfer can be a fast and effective method for restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号