首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a stochastic, individual-based model for food web simulation which in the large-population limit reduces to the well-studied Webworld model, which has been used to successfully construct model food webs with several realistic features. We demonstrate that an almost exact match is found between the population dynamics in fixed food webs, and that the demographic fluctuations have systematic effects when the new model is used to construct food webs due to the presence of species with small populations.  相似文献   

2.
We investigate the influence of functional responses (Lotka-Volterra or Holling type), initial topological web structure (randomly connected or niche model), adaptive behavior (adaptive foraging and predator avoidance) and the type of constraints on the adaptive behavior (linear or nonlinear) on the stability and structure of food webs. Two kinds of stability are considered: one is the network robustness (i.e., the proportion of species surviving after population dynamics) and the other is the species deletion stability. When evaluating the network structure, we consider link density as well as the trophic level structure. We show that the types of functional responses and initial web structure do not have a large effect on the stability of food webs, but foraging behavior has a large stabilizing effect. It leads to a positive complexity-stability relationship whenever higher "complexity" implies more potential prey per species. The other type of adaptive behavior, predator avoidance behavior, makes food webs only slightly more stable. The observed link density after population dynamics depends strongly on the presence or absence of adaptive foraging, and on the type of constraints used. We also show that the trophic level structure is preserved under population dynamics with adaptive foraging.  相似文献   

3.
Integrating ecosystem engineering and food webs   总被引:1,自引:0,他引:1  
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non‐trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non‐trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.  相似文献   

4.
Extinction affected food web structure in paleoecosystems. Recent theoretical studies that examined the effects of extinction intensity on food web structure on ecological time scales have considered extinction to involve episodic events, with pre-extinction food webs becoming established without dynamics. However, in terms of the paleontological time scale, food web structures are generated from feedback with repeated extinctions, because extinction frequency is affected by food web structure, and food web structure itself is a product of previous extinctions. We constructed a simulation model of changes in tri-trophic-level food webs to examine how continual extinction events affect food webs on an evolutionary time scale. We showed that under high extinction intensity (1) species diversity, especially that of consumer species, decreased; (2) the total population density at each trophic level decreased, while the densities of individual species increased; and (3) the trophic link density of the food web increased. In contrast to previous models, our results were based on an assumption of long-term food web development and are able to explain overall trends posited by empirical investigations based on fossil records.  相似文献   

5.
Few models concern how environmental variables such as temperature affect community structure. Here, we develop a model of how temperature affects food web connectance, a powerful driver of population dynamics and community structure. We use the Arrhenius equation to add temperature dependence of foraging traits to an existing model of food web structure. The model predicts potentially large temperature effects on connectance. Temperature-sensitive food webs exhibit slopes of up to 0.01 units of connectance per 1°C change in temperature. This corresponds to changes in diet breadth of one resource item per 2°C (assuming a food web containing 50 species). Less sensitive food webs exhibit slopes down to 0.0005, which corresponds to about one resource item per 40°C. Relative sizes of the activation energies of attack rate and handling time determine whether warming increases or decreases connectance. Differences in temperature sensitivity are explained by differences between empirical food webs in the body size distributions of organisms. We conclude that models of temperature effects on community structure and dynamics urgently require considerable development, and also more and better empirical data to parameterize and test them.  相似文献   

6.
7.
Pollution represents a major threat to biodiversity. A wide class of pollutants tends to accumulate within organisms and propagate within communities via trophic interactions. Thus the final effects of accumulable pollutants may be determined by the structure of food webs and not only by the susceptibility of their constituent species. Species within real food webs are typically arranged into modules, which have been proposed to be determinants of network stability. In this study we evaluate the effect of network modularity and species richness on long‐term species persistence in communities perturbed by pollutant stress. We built model food webs with different levels of modularity and used a bioenergetic model to project the dynamics of species. Further, we modeled the dynamics of bioaccumulated and environmental pollutants. We found that modularity promoted the stability of food webs subjected to pollutant stress. We also found that richer food webs were more robust at all modularity levels. Nevertheless, modularity did not promote stability of communities facing a perturbation that shared most features with the pollutant perturbation, but does not spread through trophic interactions. The positive effect of both modularity and species richness on species persistence was cancelled and even reversed when the structure of food web departed from a realistic body size distribution or a hierarchical feeding structure. Our results support the idea that modularity implies important dynamic consequences for communities facing pollution, highlighting a main role of network structure on ecosystem stability.  相似文献   

8.
Stochastic variability of key abiotic factors including temperature, precipitation and the availability of light and nutrients greatly influences species’ ecological function and evolutionary fate. Despite such influence, ecologists have typically ignored the effect of abiotic stochasticity on the structure and dynamics of ecological networks. Here we help to fill that gap by advancing the theory of how abiotic stochasticity, in the form of environmental noise, affects the population dynamics of species within food webs. We do this by analysing an allometric trophic network model of Lake Constance subjected to positive (red), negative (blue), and non‐autocorrelated (white) abiotic temporal variability (noise) introduced into the carrying capacity of basal species. We found that, irrespective of the colour of the introduced noise, the temporal variability of the species biomass within the network both reddens (i.e. its positive autocorrelation increases) and dampens (i.e. the magnitude of variation decreases) as the environmental noise is propagated through the food web by its feeding interactions from the bottom to the top. The reddening reflects a buffering of the noise‐induced population variability by complex food web dynamics such that non‐autocorrelated oscillations of noise‐free deterministic dynamics become positively autocorrelated. Our research helps explain frequently observed red variability of natural populations by suggesting that ecological processing of environmental noise through food webs with a range of species’ body sizes reddens population variability in nature.  相似文献   

9.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

10.
Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.  相似文献   

11.
This article explores effects of adaptive intraguild predation on species coexistence and community structure in three species' food webs. Two Lotka-Volterra models that assume a trade-off between competition and predation strength are considered in detail. The first model does not explicitly model resource dynamics and is considered with both nonadaptive and adaptive intraguild predation; in the latter case predators choose their diet in order to maximize their instantaneous population growth rate. The second model includes resource population dynamics. Effects of adaptive intraguild predation on the community structure along a gradient in environment productivity are analyzed and compared with some experimental results of protist food webs. Conditions under which intraguild predation is adaptive are discussed for both models. It is proved that if intraguild predators are perfect optimizers then intraguild predation should decrease with increasing environmental productivity and adaptive intraguild predation is a stabilizing factor provided environmental productivity is high enough.  相似文献   

12.
Previous studies have shown that high-resolution, empirical food webs possess a non-random network structure, typically characterized by uniform or exponential degree distributions. However, the empirical food webs that have been investigated for their structural properties represent local communities that are only a subset of a larger pool of regionally coexisting species. Here, we use a simple model to investigate the effects of regional food web structure on local food webs that are assembled by two simple processes: random immigration of species from a source web (regional food web), and random extinction of species within the local web. The model shows that local webs with non-random degree distributions can arise from randomly structured source webs. A comparison of local webs assembled from randomly structured source webs with local webs assembled from source webs generated by the niche model shows that the former have higher species richness at equilibrium, but have a nonlinear response to changing extinction rates. These results imply that the network structure of regional food webs can play a significant role in the assembly and dynamics of local webs in natural ecosystems. With natural landscapes becoming increasingly fragmented, understanding such structure may be a necessary key to understanding the maintenance and stability of local species diversity.  相似文献   

13.
Recent investigations on the structure of complex networks have provided interesting results for ecologists. Being inspired by these studies, we analyse a well-defined set of small model food webs. The extinction probability caused by internal Lotka-Volterra dynamics is compared to the position of species. Simulations have revealed that some global properties of these food webs (e.g. the homogeneity of connectedness) and the positions of species therein (e.g. interaction pattern) make them prone to modelled biotic extinction caused by population dynamical effects. We found that: (a) homogeneity in the connectedness structure increases the probability of extinction events; (b) in addition to the number of interactions, their orientations also influence the future of species in a web. Since species in characteristic network positions are prone to extinction, results could also be interpreted as describing the properties of preferred states of food webs during community assembly. Our results may contribute to understanding the intimate relationship between pattern and process in ecology.  相似文献   

14.
Food web structure in riverine landscapes   总被引:7,自引:0,他引:7  
1. Most research on freshwater (and other) food webs has focused on apparently discrete communities, in well-defined habitats at small spatial and temporal scales, whereas in reality food webs are embedded in complex landscapes, such as river corridors. Food web linkages across such landscapes may be crucial for ecological pattern and process, however. Here, we consider the importance of large scale influences upon lotic food webs across the three spatial dimensions and through time.
2. We assess the roles of biotic factors (e.g. predation, competition) and physical habitat features (e.g. geology, land-use, habitat fragmentation) in moulding food web structure at the landscape scale. As examples, external subsidies to lotic communities of nutrients, detritus and prey vary along the river corridor, and food web links are made and broken across the land–water interface with the rise and fall of the flood.
3. We identify several avenues of potentially fruitful research, particularly the need to quantify energy flow and population dynamics. Stoichiometric analysis of changes in C : N : P nutrient ratios over large spatial gradients (e.g. from river source to mouth, in forested versus agricultural catchments), offers a novel method of uniting energy flow and population dynamics to provide a more holistic view of riverine food webs from a landscape perspective. Macroecological approaches can be used to examine large-scale patterns in riverine food webs (e.g. trophic rank and species–area relationships). New multivariate statistical techniques can be used to examine community responses to environmental gradients and to assign traits to individual species (e.g. body-size, functional feeding group), to unravel the organisation and trophic structure of riverine food webs.  相似文献   

15.
Ecological communities are constantly being reshaped in the face of environmental change and anthropogenic pressures. Yet, how food webs change over time remains poorly understood. Food web science is characterized by a trade‐off between complexity (in terms of the number of species and feeding links) and dynamics. Topological analysis can use complex, highly resolved empirical food web models to explore the architecture of feeding interactions but is limited to a static view, whereas ecosystem models can be dynamic but use highly aggregated food webs. Here, we explore the temporal dynamics of a highly resolved empirical food web over a time period of 18 years, using the German Bight fish and benthic epifauna community as our case study. We relied on long‐term monitoring ecosystem surveys (from 1998 to 2015) to build a metaweb, i.e. the meta food web containing all species recorded over the time span of our study. We then combined time series of species abundances with topological network analysis to construct annual food web snapshots. We developed a new approach, ‘node‐weighted’ food web metrics by including species abundances to represent the temporal dynamics of food web structure, focusing on generality and vulnerability. Our results suggest that structural food web properties change through time; however, binary food web structural properties may not be as temporally variable as the underlying changes in species composition. Further, the node‐weighted metrics enabled us to detect that food web structure was influenced by changes in species composition during the first half of the time series and more strongly by changes in species dominance during the second half. Our results demonstrate how ecosystem surveys can be used to monitor temporal changes in food web structure, which are important ecosystem indicators for building marine management and conservation plans.  相似文献   

16.
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability.  相似文献   

17.
Ecologists have long debated the properties that confer stability to complex, species‐rich ecological networks. Species‐level soil food webs are large and structured networks of central importance to ecosystem functioning. Here, we conducted an analysis of the stability properties of an up‐to‐date set of theoretical soil food web models that account both for realistic levels of species richness and the most recent views on the topological structure (who is connected to whom) of these food webs. The stability of the network was best explained by two factors: strong correlations between interaction strengths and the blocked, nonrandom trophic structure of the web. These two factors could stabilize our model food webs even at the high levels of species richness that are typically found in soil, and that would make random systems very unstable. Also, the stability of our soil food webs is well‐approximated by the cascade model. This result suggests that stability could emerge from the hierarchical structure of the functional organization of the web. Our study shows that under the assumption of equilibrium and small perturbations, theoretical soil food webs possess a topological structure that allows them to be complex yet more locally stable than their random counterpart. In particular, results strongly support the general hypothesis that the stability of rich and complex soil food webs is mostly driven by correlations in interaction strength and the organization of the soil food web into functional groups. The implication is that in real‐world food web, any force disrupting the functional structure and distribution pattern of interaction strengths (i.e., energy fluxes) of the soil food webs will destabilize the dynamics of the system, leading to species extinction and major changes in the relative abundances of species.  相似文献   

18.
We investigate the long-term web structure emerging in evolutionary food web models when different types of functional responses are used. We find that large and complex webs with several trophic layers arise only if the population dynamics is such that it allows predators to focus on their best prey species. This can be achieved using modified Lotka-Volterra or Holling/Beddington functional responses with effective couplings that depend on the predator's efficiency at exploiting the prey, or a ratio-dependent functional response with adaptive foraging. In contrast, if standard Lotka-Volterra or Holling/Beddington functional responses are used, long-term evolution generates webs with almost all species being basal, and with additionally many links between these species. Interestingly, in all cases studied, a large proportion of weak links result naturally from the evolution of the food webs.  相似文献   

19.
We explore the consequences of modifying the way in which species are defined in an evolutionary food web model. In the original version of the model, the species were defined in terms of a fixed number of features, chosen from a large number of possibilities. These features represented phenotypic and behavioural characteristics of the species. Speciation consisted in occasionally replacing one of the features by another. Here we modify this scheme by firstly allowing for a richer structure and secondly by testing whether we are able to eliminate the need for an explicit choice of features altogether. In the first case we allow for changing the number of features which define a species, as well as their nature, and find that in the resulting webs the higher trophic levels typically contain species with the greatest number of features. In the second case, by a simplification of the mechanisms for inter and intra-species competition, we construct a model without any explicit features and find that we are still able to grow model food webs. We assess the quality of the food webs produced and discuss the consequences of our findings for the future modelling of food webs.  相似文献   

20.
Ecologists have long searched for structures and processes that impart stability in nature. In particular, food web ecology has held promise in tackling this issue. Empirical patterns in food webs have consistently shown that the distributions of species and interactions in nature are more likely to be stable than randomly constructed systems with the same number of species and interactions. Food web ecology still faces two fundamental challenges, however. First, the quantity and quality of food web data required to document both the species richness and the interaction strengths among all species within food webs is largely prohibitive. Second, where food webs have been well documented, spatial and temporal variation in food web structure has been ignored. Conversely, research that has addressed spatial and temporal variation in ecosystems has generally ignored the full complexity of food web architecture. Here, we incorporate empirical patterns, largely from macroecology and behavioural ecology, into a spatially implicit food web structure to construct a simple landscape theory of food web architecture. Such an approach both captures important architectural features of food webs and allows for an exploration of food web structure across a range of spatial scales. Finally, we demonstrated that food webs are hierarchically organized along the spatial and temporal niche axes of species and their utilization of food resources in ways that stabilize ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号