首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To perceptually separate concurrent complex sounds, normally hearing listeners simultaneously combine information across a wide range of frequency components. Three psychoacoustical experiments are described which investigate different forms of this across-frequency processing. The first two experiments investigate the role of coherence of frequency modulation (FM) between widely separated frequency components of a complex sound. The first experiment bolsters existing evidence that, for harmonic sounds, listeners can discriminate coherent from incoherent FM, but only by detecting the mistuning that arises from incoherent FM. The second demonstrates that, for inharmonic sounds, coherence of FM has no effect on the phenomenon of modulation detection interference (see Moore & Shailer, this symposium) once within-channel cues (combination tones and beating) are masked by background noise. It is concluded that there is not an across-frequency mechanism specific to the detection of FM incoherence. The third experiment investigates the extent to which the detection of mistuning of one component of a harmonic complex is impaired by an interfering sound (the 'interferer') with a frequency spectrum similar to that of the mistuned component. When the interferer is gated on and off with the harmonic complex, it has only a small effect provided that its level is more than 3 dB below that of the target. However, when the interferer starts before and ends after the complex, thresholds are elevated more, and this elevation occurs even for low-level interferers. Explanations of this effect in terms of adaptation and of auditory streaming are discussed.  相似文献   

2.
Klinge A  Beutelmann R  Klump GM 《PloS one》2011,6(10):e26124
The amount of masking of sounds from one source (signals) by sounds from a competing source (maskers) heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz), two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth), and five different masker types (four complex multi-tone stimuli, one noise masker). A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.  相似文献   

3.
Our ability to detect target sounds in complex acoustic backgrounds is often limited not by the ear's resolution, but by the brain's information-processing capacity. The neural mechanisms and loci of this “informational masking” are unknown. We combined magnetoencephalography with simultaneous behavioral measures in humans to investigate neural correlates of informational masking and auditory perceptual awareness in the auditory cortex. Cortical responses were sorted according to whether or not target sounds were detected by the listener in a complex, randomly varying multi-tone background known to produce informational masking. Detected target sounds elicited a prominent, long-latency response (50–250 ms), whereas undetected targets did not. In contrast, both detected and undetected targets produced equally robust auditory middle-latency, steady-state responses, presumably from the primary auditory cortex. These findings indicate that neural correlates of auditory awareness in informational masking emerge between early and late stages of processing within the auditory cortex.  相似文献   

4.
The auditory system creates a neuronal representation of the acoustic world based on spectral and temporal cues present at the listener''s ears, including cues that potentially signal the locations of sounds. Discrimination of concurrent sounds from multiple sources is especially challenging. The current study is part of an effort to better understand the neuronal mechanisms governing this process, which has been termed “auditory scene analysis”. In particular, we are interested in spatial release from masking by which spatial cues can segregate signals from other competing sounds, thereby overcoming the tendency of overlapping spectra and/or common temporal envelopes to fuse signals with maskers. We studied detection of pulsed tones in free-field conditions in the presence of concurrent multi-tone non-speech maskers. In “energetic” masking conditions, in which the frequencies of maskers fell within the ±1/3-octave band containing the signal, spatial release from masking at low frequencies (∼600 Hz) was found to be about 10 dB. In contrast, negligible spatial release from energetic masking was seen at high frequencies (∼4000 Hz). We observed robust spatial release from masking in broadband “informational” masking conditions, in which listeners could confuse signal with masker even though there was no spectral overlap. Substantial spatial release was observed in conditions in which the onsets of the signal and all masker components were synchronized, and spatial release was even greater under asynchronous conditions. Spatial cues limited to high frequencies (>1500 Hz), which could have included interaural level differences and the better-ear effect, produced only limited improvement in signal detection. Substantially greater improvement was seen for low-frequency sounds, for which interaural time differences are the dominant spatial cue.  相似文献   

5.
A number of nonhuman primates produce vocalizations with time-varying harmonic structure. Relatively little is known about whether such spectral information plays a role in call type classification. We address this problem by utilizing acoustic analyses and playback experiments on cottontop tamarins‘ combi nation long call, a species-typical vocalization with a characteristic harmonic structure. Specifically, we used habituation-discrimination experiments to test whether particular frequency components, as well as the relationship between components, have an effect on the perception and classification of long calls. In Condition 1, we show that tamarins classify natural and synthetic exemplars of the long call as perceptually similar, thereby allowing us to use synthetics to manipulate components of this signal precisely. In subsequent conditions, we tested the perceptual salience and discriminability of long calls in which we deleted (1) the second harmonic, (2) the fundamental frequency, or (3) all frequencies above the fundamental; we also examined the effects of frequency mistuning by shifting the second harmonic by 1000 Hz. Following habituation to unmanipulated long calls, tamarins did not respond (transferred habituation) to long calls with either a missing fundamental frequency or the second harmonic, but responded (discriminated) to long calls with the upper harmonics eliminated or with the second harmonic mistuned. These studies reveal the importance of harmonic structure in tamarin perception, and highlight the advantages of using synthetic signals for understanding how particular acoustic features drive perceptual classification in nonhuman primates. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

6.
The ability to detect sudden changes in the environment is critical for survival. Hearing is hypothesized to play a major role in this process by serving as an “early warning device,” rapidly directing attention to new events. Here, we investigate listeners'' sensitivity to changes in complex acoustic scenes—what makes certain events “pop-out” and grab attention while others remain unnoticed? We use artificial “scenes” populated by multiple pure-tone components, each with a unique frequency and amplitude modulation rate. Importantly, these scenes lack semantic attributes, which may have confounded previous studies, thus allowing us to probe low-level processes involved in auditory change perception. Our results reveal a striking difference between “appear” and “disappear” events. Listeners are remarkably tuned to object appearance: change detection and identification performance are at ceiling; response times are short, with little effect of scene-size, suggesting a pop-out process. In contrast, listeners have difficulty detecting disappearing objects, even in small scenes: performance rapidly deteriorates with growing scene-size; response times are slow, and even when change is detected, the changed component is rarely successfully identified. We also measured change detection performance when a noise or silent gap was inserted at the time of change or when the scene was interrupted by a distractor that occurred at the time of change but did not mask any scene elements. Gaps adversely affected the processing of item appearance but not disappearance. However, distractors reduced both appearance and disappearance detection. Together, our results suggest a role for neural adaptation and sensitivity to transients in the process of auditory change detection, similar to what has been demonstrated for visual change detection. Importantly, listeners consistently performed better for item addition (relative to deletion) across all scene interruptions used, suggesting a robust perceptual representation of item appearance.  相似文献   

7.
8.
In a behavioral experiment, we investigated how efficiently barn owls (Tyto alba) could detect changes in the spectral profile of multi-component auditory signals with stochastic envelope patterns. Signals consisted of one or five bands of noise (bandwidth 4, 16, or 64 Hz each; center frequencies 1.02, 1.43, 2.0, 2.8, 3.92 kHz). We determined increment thresholds for the 2 kHz component for three conditions: single-band condition (only the 2 kHz component), all five noise bands with the envelope fluctuations of the bands being either correlated or uncorrelated. Noise bandwidth had no significant effect on increment detection. Increment thresholds for the different conditions, however, differed significantly. Thresholds in correlated conditions were generally the lowest of all conditions, whereas, thresholds in uncorrelated conditions mostly resulted in the highest thresholds. This can be interpreted as evidence for comodulation masking release in barn owls. If the increment in the 2 kHz component is balanced by decrementing the four flanking bands in amplitude, increment detection thresholds are not affected. The data suggest that the barn owls used information from simultaneous spectral comparison across different frequency channels to detect spectral changes in multi-component noise signals rather than sequential comparison of overall stimulus levels.  相似文献   

9.
Thresholds of the event-related potentials (ERPs) appearance were measured for one stationary and four moving auditory images presented in silence or under forward masking conditions. The difference between thresholds in silence and after noise masker was considered as masking level. Under the forward masking, the amplitude of the ERP to the first click in the test series decreased in guinea pig auditory cortex. Masking level decreased with the time lag between signal and masker and didn't depend on the fused auditory image localization that corresponded to the first click in different test signals. This fact can support the hypothesis that for the long test signals the initial part can be masked more than the final one. The ERPs amplitude to next clicks in test series depended on interaction of two factors: forward masking in the "masker-signal" system and interaction of separate ERPs in the series evoked by the test signal.  相似文献   

10.
We tested the ability of birds to detect and discriminate natural vocal signals in the presence of masking noise using operant conditioning. Masked thresholds were measured for budgerigars, Melopsittacus undulatus, and zebra finches, Taeniopygia guttata, on natural contact calls of budgerigars, zebra finches and canaries, Serinus canaria. Thresholds increased with increasing call bandwidth, the presence of amplitude modulation and high rates of frequency modulation in calls. As expected, detection thresholds increased monotonically with background noise level. Call detection thresholds varied with the spectral shape of noise. Vocal signals were masked predominantly by noise energy in the spectral region of the signals and not by energy at spectral regions remote from the signals. In all cases, thresholds for discrimination between calls of the same species were higher than thresholds for detection of those calls. Our data provide the first opportunity to estimate distances over which specific communication signals may be effective (i.e. their ‘active space’) using masked thresholds for the signals themselves. Our results suggest that measures of peak sound pressure level, combined with the spectrum level of noise within the frequency channel having the greatest signal power relative to background noise, give the most similar results for estimating a signal's maximum communication distance across a variety of sounds. We provide a simple model for estimating likely detection and discrimination distances for the signals tested here. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

11.
In the present study, we examined the frequency dependence of auditory search performance. Detection thresholds were measured for an 800-Hz target tone in a sequence of distractor tones (informational masking) as a function of frequency separation between the target and the distractor tones. The results showed that the thresholds decreased monotonically with frequency separation increasing. To further quantify the frequency dependence of auditory search performance, we applied a roex function (Patterson and Moore, 1986) to estimate a filter bandwidth for the threshold data. The estimated bandwidth was wider than that of an auditory filter by a factor of five (Leek et al., 1991). This result, together with some earlier results (Mori, 2003), demonstrates the effectiveness of the informational masking we used.  相似文献   

12.
Anthropogenic noise in aquatic environments is a worldwide concern due to its potential adverse effects on the environment and aquatic life. The Hongkong-Zhuhai-Macao Bridge is currently under construction in the Pearl River Estuary, a hot spot for the Indo-Pacific humpbacked dolphin (Sousa chinensis) in China. The OCTA-KONG, the world''s largest vibration hammer, is being used during this construction project to drive or extract steel shell piles 22 m in diameter. This activity poses a substantial threat to marine mammals, and an environmental assessment is critically needed. The underwater acoustic properties of the OCTA-KONG were analyzed, and the potential impacts of the underwater acoustic energy on Sousa, including auditory masking and physiological impacts, were assessed. The fundamental frequency of the OCTA-KONG vibration ranged from 15 Hz to 16 Hz, and the noise increments were below 20 kHz, with a dominant frequency and energy below 10 kHz. The resulting sounds are most likely detectable by Sousa over distances of up to 3.5 km from the source. Although Sousa clicks do not appear to be adversely affected, Sousa whistles are susceptible to auditory masking, which may negatively impact this species'' social life. Therefore, a safety zone with a radius of 500 m is proposed. Although the zero-to-peak source level (SL) of the OCTA-KONG was lower than the physiological damage level, the maximum root-mean-square SL exceeded the cetacean safety exposure level on several occasions. Moreover, the majority of the unweighted cumulative source sound exposure levels (SSELs) and the cetacean auditory weighted cumulative SSELs exceeded the acoustic threshold levels for the onset of temporary threshold shift, a type of potentially recoverable auditory damage resulting from prolonged sound exposure. These findings may aid in the identification and design of appropriate mitigation methods, such as the use of air bubble curtains, “soft start” and “power down” techniques.  相似文献   

13.
The fish auditory system encodes important acoustic stimuli used in social communication, but few studies have examined response properties of central auditory neurons to natural signals. We determined the features and responses of single hindbrain and midbrain auditory neurons to tone bursts and playbacks of conspecific sounds in the soniferous damselfish, Abudefduf abdominalis. Most auditory neurons were either silent or had slow irregular resting discharge rates <20 spikes s−1. Average best frequency for neurons to tone stimuli was ~130 Hz but ranged from 80 to 400 Hz with strong phase-locking. This low-frequency sensitivity matches the frequency band of natural sounds. Auditory neurons were also modulated by playbacks of conspecific sounds with thresholds similar to 100 Hz tones, but these thresholds were lower than that of tones at other test frequencies. Thresholds of neurons to natural sounds were lower in the midbrain than the hindbrain. This is the first study to compare response properties of auditory neurons to both simple tones and complex stimuli in the brain of a recently derived soniferous perciform that lacks accessory auditory structures. These data demonstrate that the auditory fish brain is most sensitive to the frequency and temporal components of natural pulsed sounds that provide important signals for conspecific communication.  相似文献   

14.
In random noise, masking is influenced almost entirely by noise components in a narrow band around the signal frequency. However, when the noise is not random, but has a modulation pattern which is coherent across frequency, noise components relatively remote from the signal frequency can actually produce a release from masking. This masking release has been called comodulation masking release (CMR). The present research investigated whether a similar release from masking occurs in the analysis of a suprathreshold signal. Specifically, the ability to detect the presence of a temporal gap was investigated in conditions which do and do not result in CMR for detection threshold. Similar conditions were investigated for the masking level difference (a binaural masking release phenomenon). The results indicated that suprathreshold masking release for gap detection occurred for both the masking-level difference (MLD) and for CMR. However, masking release for gap detection was generally smaller than that obtained for detection threshold. The largest gap detection masking release effects obtained corresponded to relatively low levels of stimulation, where gap detection was relatively poor.  相似文献   

15.
Summary The cochlea of the mustache bat, Pteronotus parnellii, is very sensitive and sharply tuned to the frequency range of the dominant second harmonic of the echolocation call around 61 kHz. About 900 Hz above this frequency the cochlear microphonic potential (CM) reaches its maximum amplitude and lowest threshold. At exactly the same frequency, pronounced evoked otoacoustic emissions (OAE) can be measured in the outer ear canal, indicating mechanical resonance. The CM amplitude maximum and the OAE are most severely masked by simultaneous exposure to tones within the range from about 61–62 kHz up to about 70 kHz. The data suggest that the mechanism of mechanical resonance involves cochlear loci basal to the 61 kHz position.The resonance contributes to auditory sensitivity and sharp tuning: At the frequency of the OAE, single unit responses in the cochlear nucleus have the lowest thresholds. Maximum tuning sharpness occurs at frequencies about 300 Hz below the OAE-frequency, where the threshold is about 10 dB less sensitive than at the OAE-frequency. In addition, in the frequency range around the OAE-frequency several specialized neuronal response features can be related to mechanical resonance: Long lasting excitation after the end of the stimulus, asymmetrical tuning curves with a shallow high frequency slope and phasic on-off neuronal response patterns. In particular the latter phenomenon indicates the occurrence of local mechanical cancellations in the cochlea.Abbreviations CF constant frequency component of echolocation calls - CM cochlear microphonic potential - FM frequency modulated component of echolocation calls - N1 compound action potential of the auditory nerve - OAE octoacoustic emission - SEOAE synchronous evoked OAE  相似文献   

16.
Humans routinely segregate a complex acoustic scene into different auditory streams, through the extraction of bottom-up perceptual cues and the use of top-down selective attention. To determine the neural mechanisms underlying this process, neural responses obtained through magnetoencephalography (MEG) were correlated with behavioral performance in the context of an informational masking paradigm. In half the trials, subjects were asked to detect frequency deviants in a target stream, consisting of a rhythmic tone sequence, embedded in a separate masker stream composed of a random cloud of tones. In the other half of the trials, subjects were exposed to identical stimuli but asked to perform a different task—to detect tone-length changes in the random cloud of tones. In order to verify that the normalized neural response to the target sequence served as an indicator of streaming, we correlated neural responses with behavioral performance under a variety of stimulus parameters (target tone rate, target tone frequency, and the “protection zone”, that is, the spectral area with no tones around the target frequency) and attentional states (changing task objective while maintaining the same stimuli). In all conditions that facilitated target/masker streaming behaviorally, MEG normalized neural responses also changed in a manner consistent with the behavior. Thus, attending to the target stream caused a significant increase in power and phase coherence of the responses in recording channels correlated with an increase in the behavioral performance of the listeners. Normalized neural target responses also increased as the protection zone widened and as the frequency of the target tones increased. Finally, when the target sequence rate increased, the buildup of the normalized neural responses was significantly faster, mirroring the accelerated buildup of the streaming percepts. Our data thus support close links between the perceptual and neural consequences of the auditory stream segregation.  相似文献   

17.
Summary The rufous horseshoe bat, Rhinolophus rouxi, was trained to discriminate differences in target distance. During the discrimination trials, the bats emitted complex FM/CF/FM pulses containing first harmonic and dominant second harmonic components.Loud free running artificial pulses, simulating the CF/FM part of the natural echolocation components, interfered with the ability of the bat to discriminate target distance. Changes in the frequency or frequency pattern of the artificial pulses resulted in systematic changes in the degree of interference. Interference occurred when artificial CF/FM pulses were presented at frequencies near those of the bat's own first or second harmonic components.These findings suggest that Rhinolophus rouxi uses both the first and second harmonic components of its complex multiharmonic echolocation sound for distance discrimination. For interference to occur, the sound pattern of each harmonic component must contain a CF signal followed by an FM sweep beginning near the frequency of the CF.Abbreviations CF constant frequency - FM frequency modulated  相似文献   

18.

Background

Contrast discrimination for an image is usually harder if another image is superimposed on top. We asked whether such contrast masking may be enhanced or relieved depending on cues promoting integration of both images as a single pattern, versus segmentation into two independent components.

Methodology & Principal Findings

Contrast discrimination thresholds for a foveal test grating were sharply elevated in the presence of a perfectly overlapping orthogonally-oriented mask grating. However thresholds returned to the unmasked baseline when a surround grating was added, having the same orientation and phase of either the test or mask grating. Both such masking and ‘unmasking’ effects were much stronger for moving than static stimuli.

Conclusions & Significance

Our results suggest that common-fate motion reinforces the perception of a single coherent plaid pattern, while the surround helps to identify each component independently, thus peeling the plaid apart again. These results challenge current models of early vision, suggesting that higher-level surface organization influences contrast encoding, determining whether the contrast of a grating may be recovered independently from that of its mask.  相似文献   

19.
In spite of detailed elaboration of masking methods of measuring the frequency selectivity of hearing, such measurements actually are not in use for diagnostics purpose because of their time-consumption and ambiguity of extrapolation of the results to perception of complex sound spectrum patterns. A method of direct measuring of spectrum resolving power using rippled-noise test, is suggested. Results of measurements have shown that the actual ability of hearing to discriminate complex sound spectra is higher than that predicted by acuteness of auditory frequency filters: dependence of acuteness of auditory frequency filters on sound level does not influence the ability to discriminate complex spectra; and the influence on interfering noise on the frequency resolving power can not be explained by a decrease of the spectral contrast by the spread of excitation.  相似文献   

20.
Discharges in cochlear nerve fibers evoked by low frequency phase-locked sinusoidal acoustic stimuli are synchronized to the stimulus waveform. Excitation and suppression regions of single units were explored using a stimulus composed of either a fixed intensity test tone at the characteristic frequency, a variable intensity interfering tone with a simple integer frequency relation to the characteristic frequency, or both. Compound period histograms were constructed from period histograms in response to normal and reversed polarity stimuli. Discharge patterns were characterized by Fourier components of the histogram envelopes. The two stimulus frequencies constituted the principal harmonics in the histogram envelopes and their combination accounted for observed rate changes. Suppression of the test tone harmonic as a function of interfering tone intensity was always seen; rate suppression was not. The harmonic was typically suppressed by 20–30 dB compared to the value for the test tone alone and often reached the 40–60 dB resolution limit of the experiment. Suppression plots were nearly linear on a power scale with an average slope of-0.8. The onset of suppression occurred for an interfering tone 9 dB greater on average than the test tone intensity. Information transfer through the peripheral system was described by the ratio of the principal harmonic amplitudes versus the ratio of the intensities of the two stimulus tones. These plots were nearly linear on a power scale with an average slope of 0.9. Neither the onset of suppression nor the slopes of the harmonic plots displayed strong dependence on characteristic frequency or interfering tone frequency. These features of harmonic behavior, however, are closely related to system nonlinearity. Comparison of measured harmonics to the predictions of two phenomenological models suggest the presence of complex nonlinear transformations in the peripheral auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号