首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The memristor, a resistor with memory, was postulated by Chua in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo in plants. Here we propose a simple analytical model of 2 types of memristors that can be found within plants. The electrostimulation of plants by bipolar periodic waves induces electrical responses in the Aloe vera and Mimosa pudica with fingerprints of memristors. Memristive properties of the Aloe vera and Mimosa pudica are linked to the properties of voltage gated K+ ion channels. The potassium channel blocker TEACl transform plant memristors to conventional resistors. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo.  相似文献   

2.
The fourth basic circuit element, a memristor, is a resistor with memory that was postulated by Chua in 1971. Here we found that memristors exist in vivo. The electrostimulation of the Mimosa pudica by bipolar sinusoidal or triangle periodic waves induce electrical responses with fingerprints of memristors. Uncouplers carbonylcyanide-3-chlorophenylhydrazone and carbonylcyanide-4-trifluoromethoxy-phenyl hydrazone decrease the amplitude of electrical responses at low and high frequencies of bipolar sinusoidal or triangle periodic electrostimulating waves. Memristive behavior of an electrical network in the Mimosa pudica is linked to the properties of voltage gated ion channels: the channel blocker TEACl reduces the electric response to a conventional resistor. Our results demonstrate that a voltage gated K+ channel in the excitable tissue of plants has properties of a memristor. The discovery of memristors in plants creates a new direction in the modeling and understanding of electrical phenomena in plants.  相似文献   

3.
Bioelectrochemical circuits operate in all plants including the sensitive plant Mimosa pudica Linn. The activation of biologically closed circuits with voltage gated ion channels can lead to various mechanical, hydrodynamical, physiological, biochemical and biophysical responses. Here the biologically closed electrochemical circuit in pinnae of Mimosa pudica is analyzed using the charged capacitor method for electrostimulation at different voltages. Also the equivalent electrical scheme of electrical signal transduction inside the plant''s pinna is evaluated. These circuits remain linear at small potentials not exceeding 0.5 V. At higher potentials the circuits become strongly non-linear pointing to the opening of ion channels in plant tissues. Changing the polarity of electrodes leads to a strong rectification effect and to different kinetics of a capacitor. These effects can be caused by a redistribution of K+, Cl, Ca2+ and H+ ions through voltage gated ion channels. The electrical properties of Mimosa pudica were investigated and equivalent electrical circuits within the pinnae were proposed to explain the experimental data.Key words: electrophysiology, plant cell electrostimulation, charged capacitor method, electrical circuits, electrical signaling, Mimosa pudica  相似文献   

4.
Seismonastic or thigmonastic movements of Mimosa pudica L. is mostly because of the fast loss of water from swollen motor cells, resulting in temporary collapse of cells and quick curvature in the parts where these cells are located. Because of this, the plant has been much studied since the 18th century, leading us to think about the classical binomial stimulus-response (action-reaction) when compared to animals. Mechanic and electrical stimuli were used to investigate the analogy of mimosa branch with an artificial neuron model and to observe the action potential propagation through the mimosa branch. Boolean function applied to the mimosa branch in analogy with an artificial neuron model is one of the peculiarities of our hypothesis.Key words: Mimosa pudica, pulvinus movement, boolean function  相似文献   

5.
Special red cells were found on the adaxial surface of tertiary pulvini of Mimosa pudica and experiments performed to determine the origin and function of these cells. Using anatomical (light, scanning electron and transmission electron microscopy) and electrophysiological techniques, we have demonstrated that these red cells are real mechanoreceptor cells. They can generate receptor potential following mechanical stimuli and they are in connection with excitable motor cells (through plasmodesmata). We also provide evidence that these red cells are derived from stomatal subsidiary cells and not guard cells. As histochemical studies show red cells contain tannin, which is important in development of action potentials and movements of plants. These cells could be one of unidentified mechanoreceptors of mimosa.Key Words: mimosa, mechanoreceptor cells, microscopy, electrophysiology, receptor potential  相似文献   

6.
Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica''s pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed.Key words: electrophysiology, plant electrostimulation, pulvinus, Mimosa pudica, charged capacitor method, electrical circuits, ion channels  相似文献   

7.
Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg?1) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg?1). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals.  相似文献   

8.
The sensitive plant Mimosa pudica is made insensitive by a brief treatment with colchicine. A high concentration of colchicine binding protein is present in the fresh actively moving leaves of M. pudica. This protein was partially characterized and compared with the animal brain tubulin. This colchicine binding activity is very low in the insensitive variety of Mimosa, namely Mimosa rubricaulis.  相似文献   

9.
The bending movement of the pulvinus of Mimosa pudica is caused by a rapid change in volume of the abaxial motor cells, in response to various environmental stimuli. We investigated the relationship between the actin cytoskeleton and changes in the level of calcium during rapid contractile movement of the motor cells that was induced by electrical stimulation. The bending of the pulvinus was retarded by treatments with actin-affecting reagents and calcium channel inhibitors. The actin filaments in the motor cells were fragmented in response to electrical stimulation. Further investigations were performed using protoplasts from the motor cells of M. pudica pulvini. Calcium-channel inhibitors and EGTA had an inhibitory effect on contractile movement of the protoplasts. The level of calcium increased and became concentrated in the tannin vacuole after electrical stimulation. Ruthenium Red inhibited the increase in the level of calcium in the tannin vacuole and the contractile movement of the protoplasts. However, treatment with latrunculin A abolished the inhibitory effect of Ruthenium Red. Phalloidin inhibited the contractile movement and the increase in the level of calcium in the protoplasts. Our study demonstrates that depolymerization of the actin cytoskeleton in pulvinus motor cells in response to electrical signals results in increased levels of calcium.Key words: actin, calcium, pulvinus movement, the tannin vacuole, Mimosa pudica  相似文献   

10.
Plant sensitivity to mechanical stimuli is obvious when observing the movements of Mimosa pudica leaflets when they are touched [1] or those of the Venus fly trap [2]. It is now well established that other plants are also sensitive to mechanical stimuli even if they do not exhibit such rapid movements [1]. There is a renewal of interest in mechanical stimuli as very important cues for the control of plant growth [3] and morphogenesis [4], [5]. This review focuses on mechanosensing in the case of external mechanical loading and its effect on the growth patterns of plant organs (thigmomorphogenesis). The first part of this paper deals with the responses at the whole plant level and their ecological significance. The second part deals with the perception process, with emphasis on the variable that is perceived by the plant. Knowledge about mechanosensors is not presented in great detail because this area of intensive research has been recently reviewed [6], [7]. The third part focuses on transduction, i.e., early responses at the cellular level, and particularly focuses on the importance of the kinetics of loading and the kinetics of cellular responses for the interpretation of experimental results. The fourth part focuses on parameters that regulate the mechanosensing process and points out the importance of quantitative studies. Because thigmomorphogenesis and gravitropism are difficult to disentangle, the review ends with data on gravitropism where mechanosensing is involved.  相似文献   

11.
Summary

Firstly, the author describes the anatomical and histological structures of Mimosa pudica L. during the stages of development of the young plant prior to the appearing of cambium. She then discusses, in the light of previous literature on the subject, the three principal features of Mimosa pudica: herbaceous bearing, stable tetrarchy with intercotyledonal bundles along the plumule, and small sized germination.

Finally, the author concludes that Mimosa pudica appears to be an individual with tree-like rather than herbaceous symmetry (stable tetrarchy), in which the size of germination has diminished parallelly to reduction in size of the adult individual.  相似文献   

12.
Cellular and chloroplast lipids of the leaves of Mimosa pudica have been analysed. Qualitatively the total lipid composition of this plant is similar to that reported for the photosynthetic tissues of other plants. Chloroplast lipids show some resemblance to those of algae. The cerebroside fraction of both leaves and chloroplasts contains a polyunsaturated fatty acid (20:4ω3) and a long chain sphingosine base whose Rf value coincides with that from ox brain cerebroside and not with that of phytosphingosine from spinach.  相似文献   

13.
Mimosa pigra L. is an invasive species that grows with related species called M. pudica L. M. pudica is a dietary supplement, marketing in the United States, with a claim of supporting the immune system. It is known that M. pudica has been misidentified with M. pigra L. As part of our ongoing research endeavors to identify the chemical constituents of broadly consumed herbal supplements or their adulterants, a detailed phytochemical investigation of M. pigra was undertaken. As a result, seven specialized metabolites, including six flavonoid-O-glycosides were isolated from the leaves of M. pigra. The isolated chemical constituents in this study could be used as chemical markers to differentiate M. pigra-based raw materials in various finished products, including the quality of dietary supplements claimed to contain M. pudica.  相似文献   

14.
The nervous system of animals serves the acquisition, memorization and recollection of information. Like animals, plants also acquire a huge amount of information from their environment, yet their capacity to memorize and organize learned behavioral responses has not been demonstrated. In Mimosa pudica—the sensitive plant—the defensive leaf-folding behaviour in response to repeated physical disturbance exhibits clear habituation, suggesting some elementary form of learning. Applying the theory and the analytical methods usually employed in animal learning research, we show that leaf-folding habituation is more pronounced and persistent for plants growing in energetically costly environments. Astonishingly, Mimosa can display the learned response even when left undisturbed in a more favourable environment for a month. This relatively long-lasting learned behavioural change as a result of previous experience matches the persistence of habituation effects observed in many animals.  相似文献   

15.
rRNA gene sequencing and PCR assays indicated that 215 isolates of root nodule bacteria from two Mimosa species at three sites in Costa Rica belonged to the genera Burkholderia, Cupriavidus, and Rhizobium. This is the first report of Cupriavidus sp. nodule symbionts for Mimosa populations within their native geographic range in the neotropics. Burkholderia spp. predominated among samples from Mimosa pigra (86% of isolates), while there was a more even distribution of Cupriavidus, Burkholderia, and Rhizobium spp. on Mimosa pudica (38, 37, and 25% of isolates, respectively). All Cupriavidus and Burkholderia genotypes tested formed root nodules and fixed nitrogen on both M. pigra and M. pudica, and sequencing of rRNA genes in strains reisolated from nodules verified identity with inoculant strains. Inoculation tests further indicated that both Cupriavidus and Burkholderia spp. resulted in significantly higher plant growth and nodule nitrogenase activity (as measured by acetylene reduction assays) relative to plant performance with strains of Rhizobium. Given the prevalence of Burkholderia and Cupriavidus spp. on these Mimosa legumes and the widespread distribution of these plants both within and outside the neotropics, it is likely that both β-proteobacterial genera are more ubiquitous as root nodule symbionts than previously believed.  相似文献   

16.
Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3–1.5 V of applied voltage and 2 to 10 µC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro‐stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.  相似文献   

17.
While observing the weak electrical potential in Mimosa pudica, strong electrical pulses were recorded when the methanolic extract of other plants was administered. Sodium glutamate was identified as the active compound responsible for the pulses in the methanolic extract of Melia azedarach L.  相似文献   

18.
The Venus flytrap (Dionaea muscipula Ellis) is a marvel of plant electrical, mechanical, and biochemical engineering. The rapid closure of the Venus flytrap upper leaf in about 0.1 s is one of the fastest movements in the plant kingdom. We found earlier that the electrical stimulus between a midrib and a lobe closes the Venus flytrap upper leaf without mechanical stimulation of trigger hairs. The Venus flytrap can accumulate small subthreshold charges and, when the threshold value is reached, the trap closes. Here, we investigated the electrical properties of the upper leaf of the Venus flytrap and proposed the equivalent electrical circuit in agreement with the experimental data.  相似文献   

19.
M. J. Jaffe 《Planta》1973,114(2):143-157
Summary When young plants of Hordeum vulgare. Bryonia dioica. Cucumis sativus. Phaseolus vulgaris. Mimosa pudica. and Ricinus communis. were given a gentle mechanical stimulus by rubbing the internodes for about 10 s once or twice daily, elongation was significantly retarded. Plants of Cucurbita pepo Pisum sativum and Triticum aestivum did not exhibit any such response. The initial response to rubbing was very rapid, elongation stopping less than 3 min after application of the stimulus. When the stimulus was discontinued after 7 days, elongation accelerated, reaching a normal or supernormal rate within 3 or 4 days. Mechanical stimulation also affected aspects of growth and development other than stem elongation. In Mimosa pudica, flower bud production was retarded, as was the growth of the tendrils, leaves, and petioles in Bryonia dioica. It is suggested that this response be called thigmomorphogenesis, and that it represents an adaptation designed to protect plants from the stresses produced by high winds and moving animals. Some evidence indicates that thigmomorphogenesis may be mediated by ethylene.  相似文献   

20.
Conditions under which some plants emit carbon disulfide (CS2) in the soil are unknown. A pot assembly was constructed to measure soil CS2 emissions by Mimosa pudica under conditions of undisturbed growth, root injury, and drought stress. When M. pudica was grown without disturbance, soil CS2 emissions were below the limit of detection (0.1 ng CS2 mL–1) for the entire 8-wk sampling period. However, when the roots of 6-wk-old M. pudica plants were cut to a depth of 10 cm, a maximum of 0.5 and 0.4 ng CS2 mL–1 was emitted within minutes at the 5- and 10-cm depths, respectively. These emissions declined slowly to undetectable levels after 50 min. No detectable CS2 emissions were observed at the 0- and 15-cm depths. No CS2 was emitted when 6-wk-old M. pudica plants were subjected to drought stress, however, when the same plants were watered, a maximum of 0.3, 0.4, and 0.5 ng CS2 mL–1 was emitted within minutes at the 5-, 10- and 15-cm depths, respectively. These emissions were detectable for at least 2 hr at the 10- and 15-cm depths. No detectable CS2 emissions were observed at the 0-cm depth after watering. No detectable CS2 emissions were observed at any depth under any conditions of undisturbed growth, root injury, or drought stress followed by watering for assemblies containing either no plants or Albizia julibrissin, a plant that is closely related to M. pudica but does not emit CS2. Mimosa pudica emitted detectable CS2 under conditions of root injury and rewetting of dry soil but not under conditions of undisturbed growth. Release of such a biocidal sulfide only during conditions of root injury or rewetting of dry soil would be advantageous to M. pudica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号