首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-coupled receptor kinases (GRKs) are important regulators of G protein-coupled receptor function and mediate receptor desensitization, internalization, and signaling. While GRKs also interact with and/or phosphorylate many other proteins and modify their function, relatively little is known about the cellular localization of endogenous GRKs. Here we report that GRK5 co-localizes with γ-tubulin, centrin, and pericentrin in centrosomes. The centrosomal localization of GRK5 is observed predominantly at interphase and although its localization is not dependent on microtubules, it can mediate microtubule nucleation of centrosomes. Knockdown of GRK5 expression leads to G2/M arrest, characterized by a prolonged G2 phase, which can be rescued by expression of wild type but not catalytically inactive GRK5. This G2/M arrest appears to be due to increased expression of p53, reduced activity of aurora A kinase and a subsequent delay in the activation of polo-like kinase 1. Overall, these studies demonstrate that GRK5 is localized in the centrosome and regulates microtubule nucleation and normal cell cycle progression.  相似文献   

2.
G protein-coupled receptors (GPCRs) mediate diverse signaling processes, including olfaction. G protein-coupled receptor kinases (GRKs) are important regulators of G protein signal transduction that specifically phosphorylate activated GPCRs to terminate signaling. Despite previously described roles for GRKs in GPCR signal downregulation, animals lacking C. elegans G protein-coupled receptor kinase-2 (Ce-grk-2) function are not hypersensitive to odorants. Instead, decreased Ce-grk-2 function in adult sensory neurons profoundly disrupts chemosensation, based on both behavioral analysis and Ca(2+) imaging. Although mammalian arrestin proteins cooperate with GRKs in receptor desensitization, loss of C. elegans arrestin-1 (arr-1) does not disrupt chemosensation. Either overexpression of the C. elegans Galpha subunit odr-3 or loss of eat-16, which encodes a regulator of G protein signaling (RGS) protein, restores chemosensation in Ce-grk-2 mutants. These results demonstrate that loss of GRK function can lead to reduced GPCR signal transduction and suggest an important role for RGS proteins in the regulation of chemosensation.  相似文献   

3.
Dysregulation of dopamine (DA) receptors is believed to underlie Parkinson's disease pathology and l -DOPA-induced motor complications. DA receptors are subject to regulation by G protein-coupled receptor kinases (GRKs) and arrestins. DA lesion with 6-hydroxydopamine caused multiple protein- and brain region-specific changes in the expression of GRKs. In the globus pallidus, all four GRK isoforms (GRK2, 3, 5, 6) were reduced in the lesioned hemisphere. In the caudal caudate-putamen (cCPu) three GRK isoforms (GRK2, 3, 6) were decreased by DA depletion. The decrease in GRK proteins in globus pallidus, but not cCPu, was mirrored by reduction in mRNA. GRK3 protein was reduced in the rostral caudate-putamen (rCPu), whereas other isoforms were either unchanged or up-regulated. GRK6 protein and mRNA were up-regulated in rCPu and nucleus accumbens. l -DOPA (25 mg/kg, twice daily for 10 days) failed to reverse changes caused by DA depletion, whereas D2/D3 agonist pergolide (0.25 mg/kg daily for 10 days) restored normal levels of expression of GRK5 and 6. In rCPu, GRK2 protein was increased in most subcellular fractions by l -DOPA but not by DA depletion alone. Similarly, l -DOPA up-regulated arrestin3 in membrane fractions in both regions. GRK5 was down-regulated by l -DOPA in cCPu in the light membrane fraction, where this isoform is the most abundant. The data suggest that alterations in the expression and subcellular distribution of arrestins and GRKs contribute to pathophysiology of Parkinson's disease. Thus, these proteins may be targets for antiparkinsonian therapy.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) and arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization as well as in the modulation of important intracellular signaling cascades by GPCR. Novel studies have revealed a phosphorylation-independent desensitization mechanism operating through their RGS-homology (RH) domain and the recent determination of the crystal structures of GRK2 and GRK6 has uncovered interesting details on the structure-function relationships of these kinases. Emerging evidence indicates that the activity of GRKs is tightly modulated by mechanisms including phosphorylation by different kinases and interaction with several cellular proteins such as calmodulin, caveolin or RKIP. In addition, GRKs are involved in multiple interactions with non-receptor proteins (PI3K, Akt, GIT or MEK) that point to novel GRK cellular roles. In this article, our purpose is to describe the ever increasing map of functional interactions for GRK proteins as a basis to better understand its contribution to cellular processes.  相似文献   

5.
G protein-coupled receptor kinases (GRKs) and arrestins are key participants in the canonical pathways leading to phosphorylation-dependent GPCR desensitization, endocytosis, intracellular trafficking and resensitization as well as in the modulation of important intracellular signaling cascades by GPCR. Novel studies have revealed a phosphorylation-independent desensitization mechanism operating through their RGS-homology (RH) domain and the recent determination of the crystal structures of GRK2 and GRK6 has uncovered interesting details on the structure-function relationships of these kinases. Emerging evidence indicates that the activity of GRKs is tightly modulated by mechanisms including phosphorylation by different kinases and interaction with several cellular proteins such as calmodulin, caveolin or RKIP. In addition, GRKs are involved in multiple interactions with non-receptor proteins (PI3K, Akt, GIT or MEK) that point to novel GRK cellular roles. In this article, our purpose is to describe the ever increasing map of functional interactions for GRK proteins as a basis to better understand its contribution to cellular processes.  相似文献   

6.
Desensitization is a physiological feedback mechanism that blocks detrimental effects of persistent stimulation. G protein-coupled receptor kinase 2 (GRK2) was originally identified as the kinase that mediates G protein-coupled receptor (GPCR) desensitization. Subsequent studies revealed that GRK is a family composed of seven isoforms (GRK1–GRK7). Each GRK shows a differential expression pattern. GRK1, GRK4, and GRK7 are expressed in limited tissues. In contrast, GRK2, GRK3, GRK5, and GRK6 are ubiquitously expressed throughout the body. The roles of GRKs in GPCR desensitization are well established. When GPCRs are activated by their agonists, GRKs phosphorylate serine/threonine residues in the intracellular loops and the carboxyl-termini of GPCRs. Phosphorylation promotes translocation of β-arrestins to the receptors and inhibits further G protein activation by interrupting receptor-G protein coupling. The binding of β-arrestins to the receptors also helps to promote receptor internalization by clathrin-coated pits. Thus, the GRK-catalyzed phosphorylation and subsequent binding of β-arrestin to GPCRs are believed to be the common mechanism of GPCR desensitization and internalization. Recent studies have revealed that GRKs are also involved in the β-arrestin-mediated signaling pathway. The GRK-mediated phosphorylation of the receptors plays opposite roles in conventional G protein- and β-arrestin-mediated signaling. The GRK-catalyzed phosphorylation of the receptors results in decreased G protein-mediated signaling, but it is necessary for β-arrestin-mediated signaling. Agonists that selectively activate GRK/β-arrestin-dependent signaling without affecting G protein signaling are known as β-arrestin-biased agonists. Biased agonists are expected to have potential therapeutic benefits for various diseases due to their selective activation of favorable physiological responses or avoidance of the side effects of drugs. Furthermore, GRKs are recognized as signaling mediators that are independent of either G protein- or β-arrestin-mediated pathways. GRKs can phosphorylate non-GPCR substrates, and this is found to be involved in various physiological responses, such as cell motility, development, and inflammation. In addition to these effects, our group revealed that GRK6 expressed in macrophages mediates the removal of apoptotic cells (engulfment) in a kinase activity-dependent manner. These studies revealed that GRKs block excess stimulus and also induce cellular responses. Here, we summarized the involvement of GRKs in β-arrestin-mediated and G protein-independent signaling pathways.  相似文献   

7.
FSH rapidly desensitizes the FSH-receptor (FSH-R) upon binding. Very little information is available concerning the regulatory proteins involved in this process. In the present study, we investigated whether G protein-coupled receptor kinases (GRKs) and arrestins have a role in FSH-R desensitization, using a mouse Ltk 7/12 cell line stably overexpressing the rat FSH-R as a model. We found that these cells, which express GRK2, GRK3, GRK5, and GRK6 as well as beta-arrestins 1 and 2 as detected by RT-PCR and by Western blotting, were rapidly desensitized in the presence of FSH. Overexpression of GRKs and/or beta-arrestins in Ltk 7/12 cells allowed us to demonstrate 1) that GRK2, -3, -5, -6a, and -6b inhibit the FSH-R-mediated signaling (from 71% to 96% of maximal inhibition depending on the kinase, P < 0.001); 2) that beta-arrestins 1 or 2 also decrease the FSH action when overexpressed (80% of maximal inhibition, P < 0.01) whereas dominant negative beta-arrestin 2 [319-418] potentiates it 8-fold (P < 0.001); 3) that beta-arrestins and GRKs (except GRK6a) exert additive inhibition on FSH-induced response; and 4) that FSH-R desensitization depends upon the endogenous expression of GRKs, since there is potentiation of the FSH response (2- to 3-fold, P < 0.05) with antisenses cDNAs for GRK2, -5, and -6, but not GRK3. Our results show that the desensitization of the FSH-induced response involves the GRK/arrestin system.  相似文献   

8.
G protein-coupled receptor kinases (GRKs) mediate desensitization of agonist-occupied G protein-coupled receptors (GPCRs). Here we report that GRK5 contains a DNA-binding nuclear localization sequence (NLS) and that its nuclear localization is regulated by GPCR activation, results that suggest potential nuclear functions for GRK5. As assessed by fluorescence confocal microscopy, transfected and endogenous GRK5 is present in the nuclei of HEp2 cells. Mutation of basic residues in the catalytic domain of GRK5 (between amino acids 388 and 395) results in the nuclear exclusion of the mutant enzyme (GRK5(Delta)(NLS)), demonstrating that GRK5 contains a functional NLS. The nuclear localization of GRK5 is subject to dynamic regulation. Calcium ionophore treatment or activation of Gq-coupled muscarinic-M3 receptors promotes the nuclear export of the kinase in a Ca(2+)/calmodulin (Ca(2+)/CaM)-dependent fashion. Ca(2+)/CaM binding to the N-terminal CaM binding site of GRK5 mediates this effect. Furthermore, GRK5, but not GRK5(Delta)(NLS) or GRK2, binds specifically and directly to DNA in vitro. Consistent with their presence in the nuclei of transfected cells, all the GRK4, but not GRK2, subfamily members contain putative NLSs. These results suggest that the GRK4 subfamily of GRKs may play a signaling role in the nucleus and that GRK4 and GRK2 subfamily members perform divergent cellular functions.  相似文献   

9.
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including β2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive β2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.  相似文献   

10.
The metabotropic glutamate receptor 5 (mGluR5) is one of the important excitatory neurotransmitter receptors in the central nervous system, and its desensitization by G protein-coupled receptor kinases (GRKs) plays an important role in neuron protection against receptor overstimulation. It is reported that GRK2 could down-regulate the mGluR5 signaling in both HEK 293 cells and neurons. However, whether GRK2-mediated mGluR5 desensitization is phosphorylation dependent remains controversial. Here, we demonstrated that the signal intensity and kinetics of mGluR5 desensitization was inhibited or changed by GRK2 in HEK 293 cells. By using the catalytically inactive GRK2 mutant K220R, and the receptor mutants that lack potential phosphorylation sites in the C-terminal tail, we demonstrated that the GRK2-mediated mGluR5 desensitization was phosphorylation-independent. Furthermore, overexpression of an N-terminal regulator of G protein signaling (RGS) homology (RH) domain of GRK2 was sufficient to attenuate the mGluR5 signaling, whereas the expression of GRK2 D110A mutant devoid in Gαq binding was unable to inhibit mGluR5 signaling. In summary, this study provides evidence that GRK2 mediates phosphorylationindependent mGluR5 desensitization via the interaction between the RGS domain and Gαq in HEK 293 cells.  相似文献   

11.
G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor (GPCR) signaling. They constitute a family of seven mammalian serine-threonine protein kinases that phosphorylate agonist-bound receptor. GRKs-mediated receptor phosphorylation rapidly initiates profound impairment of receptor signaling and desensitization. Activity of GRKs and subcellular targeting is tightly regulated by interaction with receptor domains, G protein subunits, lipids, anchoring proteins and calcium sensitive proteins. Moreover, GRK phosphorylation by several other kinases and autophosphorylation have recently been shown to modulate its functionality. This review summarize our current knowledge of GRKs regulatory mechanisms and GRKs physiological function.  相似文献   

12.
Arrestins and G protein-coupled receptor kinases (GRKs) are key players in homologous desensitization of G protein-coupled receptors. Two non-visual arrestins, arrestin2 and 3, and five GRKs (GRK2, 3, 4, 5 and 6) are involved in desensitization of many receptors. Here, we demonstrate a steady increase in arrestin2 expression during prenatal development. The density of arrestin2 mRNA is higher in differentiated areas as compared with proliferative zones, whereas arrestin3 mRNA shows the opposite distribution. At embryonic day 14, concentrations of arrestin proteins are similar (32-34 nM). Later in development, arrestin2 expression rises, leading to a fourfold excess of arrestin2 over arrestin3 at birth (48 vs. 11 ng/mg protein or 102 vs. 25 nM). Among GRKs, only GRK5 increased with embryonic age from 124 nm at E14 to 359 nM at birth. Similarly, in vitro differentiation of cultured precursor cells, neurospheres, leads to a significant up-regulation of arrestin2 resulting in > 20-fold excess of arrestin2 (160 vs. 7 nM). GRK5 is the only subtype increased with neurosphere differentiation, although the change is only about twofold. The data demonstrate selective increases in the expression of arrestin2 associated with neural development and suggest specific yet unappreciated roles for arrestin2 in neural differentiation.  相似文献   

13.
The H1 histamine receptor (H1HR) is a member of the G protein-coupled receptor superfamily and regulates numerous cellular functions through its activation of the G(q/11) subfamily of heterotrimeric G proteins. Although the H1HR has been shown to undergo desensitization in multiple cell types, the mechanisms underlying the regulation of H1HR signaling are poorly defined. To address this issue, we examined the effects of wild type and mutant G protein-coupled receptor kinases (GRKs) on the phosphorylation and signaling of human H1HR in HEK293 cells. Overexpression of GRK2 promoted H1HR phosphorylation in intact HEK293 cells and completely inhibited inositol phosphate production stimulated by H1HR, whereas GRK5 and GRK6 had lesser effects on H1HR phosphorylation and signaling. Interestingly, catalytically inactive GRK2 (GRK2-K220R) also significantly attenuated H1HR-mediated inositol phosphate production, as did an N-terminal fragment of GRK2 previously characterized as a regulator of G protein signaling (RGS) protein for Galpha(q/11). Disruption of this RGS function in holo-GRK2 by mutation (GRK2-D110A) partially reversed the quenching effect of GRK2, whereas deletion of both the kinase activity and RGS function (GRK2-D110A/K220R) effectively relieved the inhibition of inositol phosphate generation. To evaluate the role of endogenous GRKs on H1HR regulation, we used small interfering RNAs to selectively target GRK2 and GRK5, two of the primary GRKs expressed in HEK293 cells. A GRK2-specific small interfering RNA effectively reduced GRK2 expression and resulted in a significant increase in histamine-promoted calcium flux. In contrast, knockdown of GRK5 expression was without effect on H1HR signaling. These findings demonstrate that GRK2 is the principal kinase mediating H1 histamine receptor desensitization in HEK293 cells and suggest that rapid termination of H1HR signaling is mediated by both the kinase activity and RGS function of GRK2.  相似文献   

14.
The non-visual arrestins, arrestin-2 and arrestin-3, belong to a small family of multifunctional cytosolic proteins. Non-visual arrestins interact with hundreds of G protein-coupled receptors (GPCRs) and regulate GPCR desensitization by binding active phosphorylated GPCRs and uncoupling them from heterotrimeric G proteins. Recently, non-visual arrestins have been shown to mediate G protein-independent signaling by serving as adaptors and scaffolds that assemble multiprotein complexes. By recruiting various partners, including trafficking and signaling proteins, directly to GPCRs, non-visual arrestins connect activated receptors to diverse signaling pathways. To investigate arrestin-mediated signaling, a structural understanding of arrestin activation and interaction with GPCRs is essential. Here we identified global and local conformational changes in the non-visual arrestins upon binding to the model GPCR rhodopsin. To detect conformational changes, pairs of spin labels were introduced into arrestin-2 and arrestin-3, and the interspin distances in the absence and presence of the receptor were measured by double electron electron resonance spectroscopy. Our data indicate that both non-visual arrestins undergo several conformational changes similar to arrestin-1, including the finger loop moving toward the predicted location of the receptor in the complex as well as the C-tail release upon receptor binding. The arrestin-2 results also suggest that there is no clam shell-like closure of the N- and C-domains and that the loop containing residue 136 (homolog of 139 in arrestin-1) has high flexibility in both free and receptor-bound states.  相似文献   

15.
G蛋白偶联受体激酶(GRK)是G蛋白偶联受体(GPCR)信号通路的负性调节因子。近来的研究发现,GRK除了磷酸化G蛋白偶联受体使其脱敏外,还能与其他非受体底物结合,功能呈现多样性。GRK5是GRK家族成员之一,该研究探索了GRK5在细胞周期和有丝分裂中的作用,结果显示:在细胞内干扰GRK5的表达导致分裂中期的细胞数目增多和细胞凋亡。进一步的研究发现,干扰GRK5的表达导致有丝分裂中期的染色体不能正常排列到赤道板,而对分裂后期染色质分离以及胞质分裂没有影响。在细胞内干扰GRK蛋白家族的另一个成员GRK2对有丝分裂则没有明显影响。该研究提示GRK5是细胞有丝分裂的重要调控蛋白。  相似文献   

16.
G protein-coupled receptor kinases (GRKs) specifically recognize and phosphorylate the agonist-occupied form of numerous G protein-coupled receptors (GPCRs), ultimately resulting in desensitization of receptor signaling. Until recently, GPCRs were considered to be the only natural substrates for GRKs. However, the recent discovery that GRKs also phosphorylate tubulin raised the possibility that additional GRK substrates exist and that the cellular role of GRKs may be much broader than just GPCR regulation. Here we report that synucleins are a novel class of GRK substrates. Synucleins (alpha, beta, gamma, and synoretin) are 14-kDa proteins that are highly expressed in brain but also found in numerous other tissues. alpha-Synuclein has been linked to the development of Alzheimer's and Parkinson's diseases. We found that all synucleins are GRK substrates, with GRK2 preferentially phosphorylating the alpha and beta isoforms, whereas GRK5 prefers alpha-synuclein as a substrate. GRK-mediated phosphorylation of synuclein is activated by factors that stimulate receptor phosphorylation, such as lipids (all GRKs) and Gbetagamma subunits (GRK2/3), suggesting that GPCR activation may regulate synuclein phosphorylation. GRKs phosphorylate synucleins at a single serine residue within the C-terminal domain. Although the function of synucleins remains largely unknown, recent studies have demonstrated that these proteins can interact with phospholipids and are potent inhibitors of phospholipase D2 (PLD2) in vitro. PLD2 regulates the breakdown of phosphatidylcholine and has been implicated in vesicular trafficking. We found that GRK-mediated phosphorylation inhibits synuclein's interaction with both phospholipids and PLD2. These findings suggest that GPCRs may be able to indirectly stimulate PLD2 activity via their ability to regulate GRK-promoted phosphorylation of synuclein.  相似文献   

17.
The activity of G protein-coupled receptors (GPCRs) is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs) and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R)- [(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA), in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK) 1/2. Additionally, an in vitro cellular model was also used to study PAOPA’s effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA’s development into a novel drug for the improved treatment of schizophrenia.  相似文献   

18.
Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.  相似文献   

19.
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号