首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2∶CaO∶P2O5 of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca2+-complex is co-added to the cell-containing alginate/gelatin hydrogel the growth behavior of the cells is not changed. Addition of 5 mg/ml of bioglass particles to this hydrogel significantly enhanced the potency of the entrapped SaOS-2 cells to mineralize. If compared with the extent of the cells to form mineral deposits in the absence of bioglass, the cells exposed to bioglass together with 100 µmoles/L polyP•Ca2+-complex increased their mineralization activity from 2.1- to 3.9-fold, or with 50 µmoles/L silica from 1.8- to 2.9-fold, or with 50 µmoles/L biosilica from 2.7- to 4.8-fold or with the two components together (100 µmoles/L polyP•Ca2+-complex and 50 µmoles/L biosilica) from 4.1- to 6.8-fold. Element analysis by EDX spectrometry of the mineral nodules formed by SaOS-2 revealed an accumulation of O, P, Ca and C, indicating that the mineral deposits contain, besides Ca-phosphate also Ca-carbonate. The results show that bioglass added to alginate/gelatin hydrogel increases the proliferation and mineralization of bioprinted SaOS-2 cells. We conclude that the development of cell-containing scaffolds consisting of a bioprintable, solid and cell-compatible inner matrix surrounded by a printable hard and flexible outer matrix containing bioglass, provide a suitable strategy for the fabrication of morphogenetically active and biodegradable implants.  相似文献   

2.
Photoinduced H2 production with Mg chlorophyll-a from Spirulina as a visible light photosensitizer by use of a three component system consisting of NADPH as an electron donor, Methyl Viologen as electron relay and colloidal platinum as catalyst was investigated. By using this system, the H2 production rate was estimated to be 0.70 ± 0.03 × 10–6 mol h–1.  相似文献   

3.
The marine gastropod Buccinanops globulosus is known to have high imposex incidence in areas moderately polluted by tributyltin (TBT). Acute toxicity was previously studied in adults but no information is known about embryonic intracapsular development. To estimate the potential effects of organotin pollution on the progeny of B. globulosus, acute toxicity tests were conducted on encapsulated and excapsulated pre-hatching embryos. The lethal median concentration estimated for 96?h (LC50 96?h) in B. globulosus excapsulated embryos was 196.70?µg?TBTCl?L?1, while in encapsulated embryos it was 2951.28?µg?TBTCl?L?1. The LC50 96?h was 15-fold higher for encapsulated embryos compared to excapsulated embryos, denoting egg capsule protection against pollutants from the external environment. Our results show that TBT pollution can have significant effects in molluscs other than the chronic effect of imposex.  相似文献   

4.
A novel bacteriochlorin bearing two spermine units ( BCS ) was synthesized from 3,13‐dibromo‐8,8,18,18‐tetramethylbacteriochlorin ( BC‐Br 3,13 ). The synthesis involved the Suzuki coupling of BC‐Br 3,13 to obtain a bacteriochlorin‐dibenzaldehyde ( BCA ), which was subjected to reductive amination with spermine. The resulting bacteriochlorin BCS presents a strong near‐infrared absorption band at 747 nm, emits at 750 nm with fluorescence quantum yield of 0.14, and generates singlet molecular oxygen, O2(1Δg), with a quantum yield of 0.27. Photokilling capacities mediated by BCS were evaluated in microbial cells. The viability of Staphylococcus aureus decreased 7 logs when cells were incubated with 1 μM BCS and irradiated for 15 minutes. Comparable photocytotoxic effect was obtained with Escherichia coli, when cells were treated for 30 minutes with visible light. BCS was also an effective photosensitizer to inactivate Candida albicans. In addition, this bacteriochlorin was able to eradicate bacteria at short incubation times. The structure of BCS contains eight basic amino groups that, when protonated in water, increase the binding to the cell envelope. In summary, the readily accessible bacteriochlorin BCS was highly effective at low concentrations as a broad‐spectrum antimicrobial photosensitizer.  相似文献   

5.
In this work, a novel approach for lipase immobilization was exploited. Lipase from Burkholderia cepacia was encapsulated into κ-carrageenan by co-extrusion method to form a liquid core capsule. The diameter of the encapsulated lipase was found to be in the range of 1.3–1.8 mm with an average membrane thickness of 200 μm and 5% coefficient of variance. The encapsulation efficiency was 42.6% and 97% moisture content respectively. The encapsulated lipase was stable between pH 6 and 9 and temperature until 50 °C. The encapsulated lipase was stable until disintegration of the carrier when stored at 27 °C and retained 72.3% of its original activity after 6 cycles of hydrolysis of p-NPP. The encapsulated lipase was stable in various organic solvents including methanol, ethanol, iso-propanol, n-hexane and n-heptane. Kinetic parameters Km and Vmax were found to be 0.22 mM and 0.06 μmol/min for free lipase and 0.25 mM and 0.05 μmol/min for encapsulated lipase respectively.  相似文献   

6.
Three microalgal species (Dictyosphaerium chlorelloides (D.c.), Scenedesmus intermedius (S.i.) and Scenedesmus sp. (S.s.)) were encapsulated in silicate sol–gel matrices and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine. Influence of several parameters on the preparation of the sensing layers has been evaluated: effect of pH on sol–gel gelation time; effect of algae density on sensor response; influence of glycerol (%) on the membrane stability. Long term stability was also tested and the fluorescence signal from biosensors remained stable for at least 3 weeks. D.c. biosensor presented the lowest detection limits for simazine (3.6 μg L−1) and the broadest dynamic calibration range (19–860 μg L−1) with IC50 125 ± 14 μg L−1. Biosensor was validated by HPLC with UV/DAD detection. The biosensor showed response to those herbicides that inhibit the photosynthesis at photosystem II (triazines: simazine, atrazine, propazine, terbuthylazine; urea based herbicides: linuron). However, no significant increases of fluorescence response was obtained for similar concentrations of 2,4-D (hormonal herbicide) or Cu(II). The combined use of two biosensors that use two different genotypes, sensitive and resistant to simazine, jointly allowed improving microalgae biosensor specificity.  相似文献   

7.
Current battery technologies are known to suffer from kinetic problems associated with the solid‐state diffusion of Li+ in intercalation electrodes materials. Not only the use of nanostructure materials but also the design of electrode architectures can lead to more advanced properties. Here, advanced electrode architectures consisting of carbon textiles conformally covered by Li4Ti5O12 nanocrystal are rationally designed and synthesized for lithium ion batteries. The efficient two‐step synthesis involves the growth of ultrathin TiO2 nanosheets on carbon textiles, and subsequent conversion into spinel Li4Ti5O12 through chemical lithiation. Importantly, this novel approach is simple and general, and it is used to successfully produce LiMn2O4/carbon composites textiles, one of the leading cathode materials for lithium ion batteries. The resulting 3D textile electrode, with various advantages including the direct electronic pathway to current collector, the easy access of electrolyte ions, the reduced Li+/e? diffusion length, delivers excellent rate capability and good cyclic stability over the Li‐ion batteries of conventional configurations.  相似文献   

8.
Patch-clamp experiments were performed on satellite glial cells wrapped around sympathetic neurons in the rabbit coeliac ganglion. With the cleaning method used, the glial cells could be kept in place and were directly accessible to the patch-clamp pipettes. Whole-cell recordings showed that glial cells had almost ohmic properties. Their resting potential (–79.1±1.2 mV) was found to be very nearly the same as the K+ reversal potential and 20 mV more negative than that of the neurons they encapsulated. Unitary currents from ionic channels present in the glial membrane were recorded in the cell-attached configuration with pipettes filled with various amounts of K+, Na+ and gluconate. Only K+-selective channels with slight inwardly rectifying properties (in the presence of 150 mM [K+]0) were detected. These channels were active (P 0=0.7–0.8) at the cell resting potential. The channel conductance, but not its opening probability, was dependent on the [K+] in the pipette. Cl-selective channels (outwardly rectifying and large conductance channels) were detected in excised patches.The properties of the K+ channels (increased inward current with [K+] and detectable outward current at low [K+]) are well suited for siphoning the K+ released by active neurons.  相似文献   

9.
The dose-dependent effects of 9 prostanoids (PGA1, PGA2, PGE1, PGE2, PGF, PGF, PGD2, PGI2, 6 keto- PGF) on metabolism of cultured bovine articular chrondrocytes were investigated. Most prostanoids dose-dependently inhibited 35SO4= and 3H-glycine incorporation. At 25 μg/ml, the inhibitory sequence was A2D2>E2 = E1 = A1>6 keto-F1α>F1>F2, but sensivity (lowest dose eliciting inhibition) followed the sequence E2 > 6 keto-F1α = F1 > A2 = D2>E1>A1. At 25 μg/ml PGA2 also inhibited incorporation of 3H-cytidine and #H-thymidine, but had no significant effect on 3H-glucose or 14C-xylose incorporation. The inhibitory effect of PGA2 was apparent after 30 minutes exposure for 35SO4= and after 60 minutesd for 3H-cytidine, and was still present up to 72 hours following incubation in fresh non-PG-containing medium. PGI2 had no significant effect of 35SO4= incorporation but at concentrations below 10 μg/ml enhanced uptake of 3H-glycine.The PG-induced inhibitory effect was apparently not due to cell damage as indicated by measurement of 3H-glucose metabolism and lactate production.  相似文献   

10.
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.  相似文献   

11.
Carl F. Cerco 《Hydrobiologia》1989,174(3):185-194
Empirical models of sediment-water fluxes of NH4 +, NO3 were and PO4 3– were formed based on published reports. The models were revised and parameters evaluated based on laboratory incubations of sediments collected from Gunston Cove, VA. Observed fluxes ranged from — 18 (sediments uptake) to 276 (sediment release) mg NH4 + m–2 day–1, –17 to –509 mg NO3 m–2 day–1, and –16.4 to 8.9 mg PO4 3– m–2 day–1. The model and observations indicated release of NH4 + was enhanced by high temperature and by low DO. Uptake of NO3 was enhanced primarily by high NO3 concentration and to a lesser extent by high temperature and by low DO. Direction of PO4 3– flux depended on concentration in the water. Release was enhanced by low DO. No effect of temperature on PO4 3– flux was observed.  相似文献   

12.
The recalcitrance of xenobiotics may be caused by an absence of transforming enzymes or by their inability to enter microbial cells. A nondestructive method for differentiating between these two possibilities is described. The solid n-alkanes octadecane (C18) and hexatriacontane (C36) were encapsulated into phosphatidylcholine bilayers (liposomes). The uptake and metabolism rates of encapsulated and unencapsulated substrates were then compared. During 1 h at 25°C, a Pseudomonas isolate took up 1.3% of radiolabeled and unencapsulated C18 (solid state) versus 23.5% of labeled and encapsulated C18. Growth at 25°C occurred with an apparent ks of 2453 ± 148 mg/liter. Liposome encapsulation decreased this Ks to 60 ± 12 mg/liter. At 34°C, growth on C18 (liquid state) occurred with an apparent Ks of 819 ± 83 mg/liter and on the readily available carbon source succinate, Ks values were 80 ± 10 and 13 ± 7 mg/liter at 25 and 34°C, respectively. At 25°C, the isolate grew on C36 with an apparent Ks of 2,698 ± 831 mg/liter. Liposome encapsulation decreased the Ks more than 60-fold to 41 ± 7 mg/liter, resulting in the complete utilization of 400 mg of C36 per liter in 16 h. Since controls excluded the metabolic utilization of phosphatidylcholine, the results clearly identify transport limitation as the cause for C36 recalcitrance.  相似文献   

13.
Egg yolk phosphatidylcholine monolamellar liposomes (1000 Å in diameter) loaded with cytochrome c were placed into an external solution, in which superoxide radicals, O2, were generated by a xanthine-xanthine oxidase system. The penetration of the superoxide radicals across the liposomal membrane was detected by cytochrome c reduction in the inner liposome compartment. The effects of modifiers and temperature on this process were studied. The permeability of liposomal membrane for O2(PO2 = (7.6 ± 0.3) · 10-8 cm/s), or HO2 (PHO2 = 4.9 · 10-4 cm/s) were determined. The effect of the transmembrane electric potential (K+ concentration gradient, valinomycin) on the permeability of liposomal membranes for O2 were investigated. It was found that O2 can penetrate across liposomal membrane in an uncharged form. The feasibility of penetration of superoxide radicals through liposomal membrane, predominantly via anionic channels, was demonstrated by the use of an intramolecular cholesterol-amphotericin B complex.  相似文献   

14.
The parasite Trypanosoma cruzi causes Chagas disease, which remains a serious public health concern and continues to victimize thousands of people, primarily in the poorest regions of Latin America. In the search for new therapeutic drugs against T. cruzi, here we have evaluated both the in vitro and the in vivo activity of 5-hydroxy-3-methyl-5-phenyl-pyrazoline-1-(S-benzyl dithiocarbazate) (H2bdtc) as a free compound or encapsulated into solid lipid nanoparticles (SLN); we compared the results with those achieved by using the currently employed drug, benznidazole. H2bdtc encapsulated into solid lipid nanoparticles (a) effectively reduced parasitemia in mice at concentrations 100 times lower than that normally employed for benznidazole (clinically applied at a concentration of 400 µmol kg−1 day−1); (b) diminished inflammation and lesions of the liver and heart; and (c) resulted in 100% survival of mice infected with T. cruzi. Therefore, H2bdtc is a potent trypanocidal agent.  相似文献   

15.
We have previously reported that the isolated frog corneal epithelium (a Cl-secreting epithelium) has a large diffusional water permeability (Pdw 1.8×10–4 cm/s). We now report that the presence of Cl in the apical-side bathing solution increases the diffusional water flux, Jdw (in both directions) by 63% from 11.3 to 18.4 l min–1 · cm–2 with 60 mm [Cl] exerting the maximum effect. The presence of Cl in the basolateral-side bathing solution had no effect on the water flux. In Cl-free solutions amphotericin B increased Jdw by 29% but only by 3% in Cl-rich apical-side bathing solution, suggesting that in Cl-rich apical side bathing solution, the apical barrier is no longer rate limiting. Apical Br (75 mm) also increased Jdw by 68%. The effect of Cl on Jdw was observed within 1 min after its addition to the apicalside bathing solution. HgCl2 (0.5 mm) reduced the Cl-increased Pdw by 31%. The osmotic permeability (Pf) was also measured under an osmotic gradient yielding values of 0.34 and 2.88 (x 10–3 cm/s) in Cl-free and Cl-rich apical-side bathing solutions respectively. It seems that apical Cl, or Cl secretion into the apical bath could activate normally present but inactive water channels. In the absence of Cl, water permeability of the apical membrane seems to be limited to the permeability of the lipid bilayer.This work was supported by National Eye Institute grants EY-00160 and EY-01867.  相似文献   

16.
Purified enzymes and cell-free homogenates encapsulated by liquid-surfactant membrane have been shown to retain their catalytic activity (see previously published literature). This paper describes the preparation and properties of liquid-surfactant membrane-encapsulated whole cells of Micrococcus denitrificansATCC 21909. Batch and continuous studies with this model system have demonstrated that encapsulated viable cells reduce nitrates and retain their catalytic activity over anextended period of time. In batch operation, the reactivity of the encapsulated whole cells has been investigated under a variety of experimental conditions. The system is capable of reducing NO3? or NO2?. Data obtained indicate that encapsulated live cells have a broad pH and temperature optimum range. The encapsulated cells remain viable and do not “escape” into the external aqueous phase, even after five days of constant stirring with nitrate-containing simulated wastewater. Pulsed substrate addition experiments have demonstrated that the encapsulated cells also effectively reduce NO2? with no significant reduction in activity, even after 5.5 days of incubation at 30°C. The membrane selectivity for ion transfer has been achieved by incorporating oil-soluble ion exchangers in the membrane. Because of the protection of the liquid membranes, the catalytic reduction of NO2? by the encapsulated whole cells is not inhibited by 1 × 10?4 M mercuric chloride, which is otherwise extremely toxic to the cells, when present in the external aqueous phase. Continuous reduction of 20 ppm of NO2? by liquid membrane-encapsulated whole cells has been demonstrated in a constantly stirred reactor over a test period of about one week. In this paper we will discuss the reduction of NO3?and NO2? by the liquid membrane-encapsulated whole cells of M. denitrificansATCC 21909 mainly in batch runs undera variety of experimental conditions, such as cell and substrate concentrations, product and inhibitor permeation, pH and temperature, effect of oil-soluble ion exchangers on the substrate diffusion, etc.  相似文献   

17.
Chlorophyll destruction by the bisulfite-oxygen system   总被引:2,自引:2,他引:0       下载免费PDF全文
Destruction of chlorophyll, as determined by the loss in absorbance at 665 nm, occurred in two in vitro systems in the presence of bisulfite in 76% ethanol. The first system required light and O2 in addition to bisulfite and exhibited an optimum pH of 4. Chlorophyll functioned as a photosensitizer and there was little chlorophyll destruction occurring above pH 5. With 286 μeinsteins m−2 irradiation, approximately 80% of the chlorophyll was destroyed in three minutes. In the second system, chlorophyll destruction in the presence of bisulfite occurred in the dark and required Mn2+, O2, and glycine. Destruction of chlorophyll in this system was much more rapid than in the light system with approximately 70% destruction occurring in two seconds. In both systems, chlorophyll destruction was linked to bisulfite oxidation. The free radical scavengers hydroquinone, butylated hydroxytoluene, 1,2-dihydroxybenzene-3,5-disulfonic acid, and α-tocopherol were effective in inhibiting the destruction of chlorophyll in both systems. The singlet O2 scavengers, 2,5-dimethylfuran and 1,3-diphenylisobenzofuran, were ineffective inhibitors and β-carotene only slightly effective when tested in the light system. The evidence suggests that in these two systems chlorophyll was destroyed by free radicals, probably superoxide radical, which was produced during the aerobic oxidation of bisulfite.  相似文献   

18.
Pathways for HCO3 transport across the basolateral membrane were investigated using membrane vesicles isolated from rat renal cortex. The presence of Cl---HCO3 exchange was assessed directly by 36Cl tracer flux measurements and indirectly by determinants of acridine orange absorbance changes. Under 10% CO2/90% N2 the imposition of an outwardly directed HCO3 concentration gradient (pHo 6/pHi 7.5) stimulated Cl uptake compared to Cl uptake under 100% N2 in the presence of a pH gradient alone. Mediated exchange of Cl for HCO3 was suggested by the HCO3 gradient-induced concentrative accumulation of intravesicular Cl. Maneuvers designed to offset the development of ion-gradient-induced diffusion potentials had no significant effect on the magnitude of HCO3 gradient-driven Cl uptake further suggesting chemical as opposed to electrical Cl−HCO3 exchange coupling. Although basolateral membrane vesicle Cl uptake was observed to be voltage sensitive, the DIDS insensitivity of the Cl conductive pathway served to distinguish this mode of Cl translocation from HCO3 gradient-driven Cl uptake. No evidence for cotransport was obtained. As determined by acridine orange absorbance measurements in the presence of an imposed pH gradient (pHo 7.5/pHi 6), a HCO3 dependent increase in the rate of intravesicular alkalinization was observed in response to an outwardly directed Cl concentration gradient. The basolateral membrane vesicle origin of the observed Cl−HCO3 exchange activity was verified by experiments performed with purified brush-border membrane vesicles. In contrast to our previous observations of the effect of Cl on HCO3 gradient-driven Na+ uptake suggesting a basolateral membrane Na+−HCO3 for Cl exchange mechanism, no effect of Na+ on Cl−HCO3 exchange was observed in the present study.  相似文献   

19.
Lee  Boon-Beng  Bhandari  Bhesh R.  Ching  Su Hung  Howes  Tony 《Food biophysics》2019,14(4):365-382

The ability of encapsulation to protect hydrophilic–bioactive food compounds from harsh environments can be improved by strengthening the hydrophilic barriers of encapsulated food compounds in Ca-alginate microgel particles via the integration of oil into the microgels. This study introduces a one-step procedure to integrate water-in-oil (W/O) emulsion droplets directly into Ca-alginate microgels during the production using the impinging aerosols system. A water-in-oil-in-water (20 kg m−3 alginate solution) (W1/O/W2) double emulsion was prepared using a high speed homogeniser followed by a microfluidiser. The microstructure of the W1/O/W2 emulsion was analysed using optical and fluorescence microscopy. The mean diameters of the W1/O/W2 emulsion droplets and resultant microgels were in the range of 27.8–65.4 μm and 160–420 μm, respectively. Food dye was used as a proxy for a hydrophilic food compound and its release from the microgels was significantly decreased when it was encapsulated in the W/O emulsion droplets. Based on the numerical analysis, the presence of the W/O emulsion droplets in the gel network reduced the degree of gelation of the microgel because the diffusion rate of Ca2+ cation in the microgel is reduced. The degree of gelation of the W/O emulsion droplets encapsulated microgel is 0.6 when the diameter of the droplet is reduced to 77.5 μm and the concentration of CaCl2 solution is doubled to 22 kg m−3. The potentiality of the impinging aerosol system to produce Ca-alginate microgels to encapsulate hydrophilic compounds with improved barriers is presented in this work.

  相似文献   

20.
Activated persulfate oxidation technologies based on sulfate radicals were first evaluated for defluorination of aqueous perfluorooctanesulfonate (PFOS). The influences of catalytic method, time, pH and K2S2O8 amounts on PFOS defluorination were investigated. The intermediate products during PFOS defluorination were detected by using LC/MS/MS. The results showed that the S2O8 2− had weak effect on the defluorination of PFOS, while the PFOS was oxidatively defluorinated by sulfate radicals in water. The defluorination efficiency of PFOS under various treatment was followed the order: HT (hydrothermal)/K2S2O8 > UV (ultraviolet)/K2S2O8 > Fe2+/K2S2O8 > US (ultrasound)/K2S2O8. Low pH was favorable for the PFOS defluorination with sulfate radicals. Increase in the amount of S2O8 2− had positive effect on PFOS defluorination. However, further increase in amounts of S2O8 2− caused insignificant improvement in PFOS defluorination due to elimination of sulfate radicals under high concentration of S2O8 2−. CF3(CF2)nCOOH (n = 0–6) were detected as intermediates during PFOS defluorination. Sulfate radicals oxidation and hydrolysis were the main mechanisms involved in defluorination process of PFOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号