首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Adrenoleukodystrophy-related protein, a peroxisomal ABC transporter encoded by ABCD2, displays functional redundancy with the disease-associated X-linked adrenoleukodystrophy protein, making pharmacological induction of ABCD2 a potentially attractive therapeutic approach. Sterol regulatory element (SRE)-binding proteins (SREBPs) induce ABCD2 through an SRE overlapping with a direct repeat (DR-4) element. Here we show that thyroid hormone (T(3)) receptor (TR)alpha and TRbeta bind this motif thereby modulating SREBP1-dependent activation of ABCD2. Unliganded TRbeta, but not TRalpha, represses ABCD2 induction independently of DNA binding. However, activation by TRalpha and derepression of TRbeta are T(3)-dependent and require intact SRE/DR-4 motifs. Electrophoretic mobility shift assays with nuclear extracts support a direct interaction of TR and SREBP1 at the SRE/DR-4. In the liver, Abcd2 expression is high in young mice (with high T(3) and TRalpha levels) but downregulated in adults (with low T(3) and TRalpha but elevated TRbeta levels). This temporal repression of Abcd2 is blunted in TRbeta-deficient mice, and the response to manipulated T(3) states is abrogated in TRalpha-deficient mice. These findings show that TRalpha and TRbeta differentially modulate SREBP1-activated ABCD2 expression at overlapping SRE/DR-4 elements, suggesting a novel mode of cross-talk between TR and SREBP in gene regulation.  相似文献   

4.
Activated nongenomically by l-thyroxine (T(4)), mitogen-activated protein kinase (MAPK) complexed in 10-20 min with endogenous nuclear thyroid hormone receptor (TRbeta1 or TR) in nuclear fractions of 293T cells, resulting in serine phosphorylation of TR. Treatment of cells with the MAPK kinase inhibitor, PD 98059, prevented both T(4)-induced nuclear MAPK-TR co-immunoprecipitation and serine phosphorylation of TR. T(4) treatment caused dissociation of TR and SMRT (silencing mediator of retinoid and thyroid hormone receptor), an effect also inhibited by PD 98059 and presumptively a result of association of nuclear MAPK with TR. Transfection into CV-1 cells of TR gene constructs in which one or both zinc fingers in the TR DNA-binding domain were replaced with those from the glucocorticoid receptor localized the site of TR phosphorylation by T(4)-activated MAPK to a serine in the second zinc finger of the TR DNA-binding domain. In an in vitro cell- and hormone-free system, purified activated MAPK phosphorylated recombinant human TRbeta1 (). Thus, T(4) activates MAPK and causes MAPK-mediated serine phosphorylation of TRbeta1 and dissociation of TR and the co-repressor SMRT.  相似文献   

5.
In this study, we investigated how thyroid hormone (3,5',5-triiodo-l-thyronine, T3) inhibits binding of thyroid hormone receptor (TR) homodimers, but not TR-retinoid X receptor heterodimers, to thyroid hormone response elements. Specifically we asked why a small subset of TRbeta mutations that arise in resistance to thyroid hormone syndrome inhibit both T3 binding and formation of TRbeta homodimers on thyroid hormone response elements. We reasoned that these mutations may affect structural elements involved in the coupling of T3 binding to inhibition of TR DNA binding activity. Analysis of TR x-ray structures revealed that each of these resistance to thyroid hormone syndrome mutations affects a cluster of charged amino acids with potential for ionic bond formation between oppositely charged partners. Two clusters (1 and 2) are adjacent to the dimer surface at the junction of helices 10 and 11. Targeted mutagenesis of residues in Cluster 1 (Arg338, Lys342, Asp351, and Asp355) and Cluster 2 (Arg429, Arg383, and Glu311) confirmed that the clusters are required for stable T3 binding and for optimal TR homodimer formation on DNA but also revealed that different arrangements of charged residues are needed for these effects. We propose that the charge clusters are homodimer-specific extensions of the dimer surface and further that T3 binding promotes specific rearrangements of these surfaces that simultaneously block homodimer formation on DNA and stabilize the bound hormone. Our data yield insight into the way that T3 regulates TR DNA binding activity and also highlight hitherto unsuspected T3-dependent conformational changes in the receptor ligand binding domain.  相似文献   

6.
Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.  相似文献   

7.
Mutations in the thyroid hormone receptor (TR) beta gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRbeta mutation (TRbetaPV) with mice carrying a TRbeta null mutation (TRbeta(-/-)) to determine the consequences of the TRbetaPV mutation in the absence of wild-type TRbeta. TRbeta(PV/-) mice are distinct from TRbeta(+/-) mice that did not show abnormalities in thyroid function tests. TRbeta(PV/-) mice are also distinct from TRbeta(PV/+) and TRbeta(-/-) mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRbeta(PV/PV) mice. Similar to TRbeta(PV/PV) mice, TRbeta(PV/-) mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRbeta(PV/-) and TRbeta(PV/PV) mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRalpha1 for binding to thyroid hormone response elements in TRbeta(PV/-) mice as effectively as in TRbeta(PV/PV) mice. Thus, the actions of mutant TRbeta are markedly potentiated by the ablation of the second TRbeta allele, suggesting that interference with wild-type TRalpha1-mediated gene regulation by mutant TRbeta leads to severe RTH.  相似文献   

8.
9.
Thyroid-stimulating hormone (TSH)-secreting tumors (TSH-omas) are pituitary tumors that constitutively secrete TSH. The molecular genetics underlying this abnormality are not known. We discovered that a knock-in mouse harboring a mutated thyroid hormone receptor (TR) beta (PV; TRbeta(PV/PV) mouse) spontaneously developed TSH-omas. TRbeta(PV/PV) mice lost the negative feedback regulation with highly elevated TSH levels associated with increased thyroid hormone levels (3,3',5-triiodo-l-thyronine [T3]). Remarkably, we found that mice deficient in all TRs (TRalpha1(-/-) TRbeta(-/-)) had similarly increased T3 and TSH levels, but no discernible TSH-omas, indicating that the dysregulation of the pituitary-thyroid axis alone is not sufficient to induce TSH-omas. Comparison of gene expression profiles by cDNA microarrays identified overexpression of cyclin D1 mRNA in TRbeta(PV/PV) but not in TRalpha1(-/-) TRbeta(-/-) mice. Overexpression of cyclin D1 protein led to activation of the cyclin D1/cyclin-dependent kinase/retinoblastoma protein/E2F pathway only in TRbeta(PV/PV) mice. The liganded TRbeta repressed cyclin D1 expression via tethering to the cyclin D1 promoter through binding to the cyclic AMP response element-binding protein. That repression effect was lost in mutant PV, thereby resulting in constitutive activation of cyclin D1 in TRbeta(PV/PV) mice. The present study revealed a novel molecular mechanism by which an unliganded TRbeta mutant acts to contribute to pituitary tumorigenesis in vivo and provided mechanistic insights into the understanding of pathogenesis of TSH-omas in patients.  相似文献   

10.
11.
12.
13.
A major challenge in understanding nuclear hormone receptor function is to determine how the same ligand can cause very different tissue-specific responses. Tissue specificity may result from the presence of more than one receptor subtype arising from multiple receptor genes or alternative splicing. Recently, high affinity analogs of nuclear receptor ligands have been synthesized that show subtype selectivity. These analogs can greatly facilitate the study of receptor subtype-specific functions in organisms where mutational analysis is problematic or where it is desirable for receptors to be expressed in their normal physiological contexts. We describe here the effects of the synthetic thyroid hormone analog GC-1 on the metamorphosis of the frog Xenopus laevis. The most potent natural thyroid hormone, 3,5,3'-triidothyronine or T3, shows similar binding affinity and transactivation dose-response curves for both thyroid hormone receptor isotypes, designated TRalpha and TRbeta. GC-1, however, binds to and activates TRbeta at least an order of magnitude better than it does TRalpha. GC-1 efficiently induces death and resorption of premetamorphic tadpole tissues such as the gills and the tail, two tissues that strongly induce thyroid hormone receptor beta during metamorphosis. GC-1 has less effect on the growth of adult tissues such as the hindlimbs, which express high TRalpha levels. The effectiveness of GC-1 in inducing tail resorption and tail gene expression correlates with increasing TRbeta levels. These results illustrate the utility of subtype selective ligands as probes of nuclear receptor function in vivo.  相似文献   

14.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

15.
16.
17.
18.
Thyroid hormone receptors (TRs) are nuclear receptors that are activated by thyroid hormone ligands and co-regulator proteins. Two receptor subtypes, TRα and TRβ, have been suggested to play a role in numerous physiological functions. However, specificity of receptor subtype function and co-regulator interaction is unclear due to the lack of TR subtype-specific ligands. Five TR ligands were evaluated for their selectivity and interaction with the TR subtypes. A multiplex assay was used to identify co-regulator peptide interaction, and biochemical assays were used to characterize ligand-receptor specificity. In the biochemical assay, rank order ligand potencies were similar in the presence of co-activator peptides, SRC1-2 and SRC3-2, and the co-repressor peptide, NCoR1-2, with T3 and Triac potencies greater in the presence of the co-repressor. The potency of Tetrac was similar regardless of the co-regulator used while T4 and rT3 demonstrated selectivity for TRα subtype. The rank order among TR ligands at either receptor subtype in the biochemical assay correlated with the multiplex assay. These assays can be used to identify new ligands that can provide further insight into TR biology.  相似文献   

19.
The effect of tyroxin-binding prealbumin (TBPA) of blood serum on the template activity of chromatin was studied. It was found that the values of binding constants of TBPA for T3 and T4 are 2 X 10(-11) M and 5 X 10(-10) M, respectively. The receptors isolated from 0.4 M KCl extract of chromatin and mitochondria as well as hormone-bound TBPA cause similar effects on the template activity of chromatin. Based on experimental results and the previously published comparative data on the structure of TBPA, nuclear, cytoplasmic and mitochondrial receptors of thyroid hormones as well as on translocation across the plasma membrane and intracellular transport of TBPA, a conclusion was drawn, which suggested that TBPA is the "core" of the true thyroid hormone receptor. It was shown that T3-bound TBPA caused histone H1-dependent conformational changes in chromatin. Based on the studies with the interaction of the TBPA-T3 complex with spin-labeled chromatin, a scheme of functioning of the thyroid hormone nuclear receptor was proposed.  相似文献   

20.
Molecular conjugates of hormone receptor-ligands with molecular probes or functional domains are finding diverse applications in chemical biology. Whereas many examples of hormone conjugates that target steroid hormone receptors have been reported, practical ligand conjugates that target the nuclear thyroid hormone receptor (TRbeta) are lacking. TR-targeting conjugate scaffolds based on the ligands GC-1 and NH-2 and the natural ligand triiodothyronine (T3) were synthesized and evaluated in vitro and in cellular assays. Whereas the T3 or GC-1 based conjugates did not bind TRbeta with high affinity, the NH-2 inspired fluorescein-conjugate JZ01 showed low nanomolar affinity for TRbeta and could be used as a nonradiometric probe for ligand binding. A related analogue JZ07 was a potent TR antagonist that is 13-fold selective for TRbeta over TRalpha. JZ01 localizes in the nuclei of TRbeta expressing cells and may serve as a prototype for other TR-targeting conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号