首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have investigated the structure, equilibria, and folding kinetics of an engineered 35-residue subdomain of the chicken villin headpiece, an ultrafast-folding protein. Substitution of two buried lysine residues by norleucine residues stabilizes the protein by 1 kcal/mol and increases the folding rate sixfold, as measured by nanosecond laser T-jump. The folding rate at 300 K is (0.7 micros)(-1) with little or no temperature dependence, making this protein the first sub-microsecond folder, with a rate only twofold slower than the theoretically predicted speed limit. Using the 70 ns process to obtain the effective diffusion coefficient, the free energy barrier height is estimated from Kramers theory to be less than approximately 1 kcal/mol. X-ray crystallographic determination at 1A resolution shows no significant change in structure compared to the single-norleucine-substituted molecule and suggests that the increased stability is electrostatic in origin. The ultrafast folding rate, very accurate X-ray structure, and small size make this engineered villin subdomain an ideal system for simulation by atomistic molecular dynamics with explicit solvent.  相似文献   

3.
Zinc-dependent protein folding   总被引:6,自引:0,他引:6  
Studies of classic zinc-finger peptides over the past 15 years have offered insights into the coupled processes of metal binding and protein folding. Within the past two years, this insight has been used to increase our understanding of the importance of first and second shell contributions (i.e. contributions from direct and indirect metal ligands) to metal binding and protein-folding stability, and led to advances in de novo protein design and protein redesign.  相似文献   

4.
Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.  相似文献   

5.
The review analyzes the research concerning the folding of proteins in the course of their synthesis on ribosomes. The experimental data obtained for various proteins using various methods give grounds for concluding that a nascent protein largely acquires its spatial structure while still attached to the ribosome, and final folding into the biologically active conformation takes place as soon as the completed protein is released therefrom. Cotranslational folding is characteristic of both bacterial and eukaryotic cells, and appears to be the universal and the most evolutionarily ancient mechanism.  相似文献   

6.
7.
Investigating the in vitro refolding of proteins that naturally reside in biological membranes is a notoriously difficult task. Biophysical studies on model systems are beginning to provide a sound physical basis for membrane protein folding that should help to alleviate this problem. Highlights of these studies include insights into the interaction of transmembrane alpha helices, as well as into the important role that membrane lipids play in folding.  相似文献   

8.
GroEL-mediated protein folding.   总被引:18,自引:6,他引:12       下载免费PDF全文
I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks.  相似文献   

9.
Theory of protein folding   总被引:9,自引:0,他引:9  
Protein folding should be complex. Proteins organize themselves into specific three-dimensional structures, through a myriad of conformational changes. The classical view of protein folding describes this process as a nearly sequential series of discrete intermediates. In contrast, the energy landscape theory of folding considers folding as the progressive organization of an ensemble of partially folded structures through which the protein passes on its way to the natively folded structure. As a result of evolution, proteins have a rugged funnel-like landscape biased toward the native structure. Connecting theory and simulations of minimalist models with experiments has completely revolutionized our understanding of the underlying mechanisms that control protein folding.  相似文献   

10.
Mechanisms of protein folding   总被引:11,自引:0,他引:11  
The strong correlation between protein folding rates and the contact order suggests that folding rates are largely determined by the topology of the native structure. However, for a given topology, there may be several possible low free energy paths to the native state and the path that is chosen (the lowest free energy path) may depend on differences in interaction energies and local free energies of ordering in different parts of the structure. For larger proteins whose folding is assisted by chaperones, such as the Escherichia coli chaperonin GroEL, advances have been made in understanding both the aspects of an unfolded protein that GroEL recognizes and the mode of binding to the chaperonin. The possibility that GroEL can remove non-native proteins from kinetic traps by unfolding them either during polypeptide binding to the chaperonin or during the subsequent ATP-dependent formation of folding-active complexes with the co-chaperonin GroES has also been explored.  相似文献   

11.
It is believed that the native folded three-dimensional conformation of a protein is its lowest free energy state, or one of its lowest. It is shown here that both a two-and three-dimensional mathematical model describing the folding process as a free energy minimization problems is NP-hard. This means that the problem belongs to a large set of computational problems, assumed to be very hard (“conditionally intractable”). Some of the possible ramifications of this results are speculated upon.  相似文献   

12.
The protein folding network   总被引:9,自引:0,他引:9  
The conformation space of a 20 residue antiparallel beta-sheet peptide, sampled by molecular dynamics simulations, is mapped to a network. Snapshots saved along the trajectory are grouped according to secondary structure into nodes of the network and the transitions between them are links. The conformation space network describes the significant free energy minima and their dynamic connectivity without requiring arbitrarily chosen reaction coordinates. As previously found for the Internet and the World-Wide Web as well as for social and biological networks, the conformation space network is scale-free and contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the native basin exhibits a hierarchical organization, which is not found for a random heteropolymer lacking a predominant free-energy minimum. The network topology is used to identify conformations in the folding transition state (TS) ensemble, and provides a basis for understanding the heterogeneity of the TS and denatured state ensemble as well as the existence of multiple pathways.  相似文献   

13.
Mechanism of protein folding   总被引:1,自引:0,他引:1  
Nölting B  Andert K 《Proteins》2000,41(3):288-298
The high structural resolution of the main transition states for the formation of native structure for the six small proteins of which Phi-values for a large set of mutants have become available, barstar, barnase, chymotrypsin inhibitor 2, Arc repressor, the src SH3 domain, and a tetrameric p53 domain reveals that for the first 5 of these proteins: (1) Residues that belong to regular secondary structure have a significantly larger average fraction of native structural consolidation than residues in loops; (2) on the other hand, secondary and tertiary structures have built up to the same degree, or at least a high degree, but nonuniformly distributed over the molecule; (3) the most consolidated parts of each protein molecule in the transition state cluster together, and these clusters contain a significantly higher percentage of residues that belong to regular secondary structure than the rest of the molecule. These observations further reconcile the framework model with the nucleation-condensation mechanism for folding: The amazing speed of protein folding can be understood as caused by the catalytic effect of the formation of clusters of residues which have particularly high preferences for the early formation of regular secondary structure in the presence of significant amounts of tertiary structure interactions.  相似文献   

14.
Energetics of protein folding   总被引:5,自引:0,他引:5  
The energetics of protein folding determine the 3D structure of a folded protein. Knowledge of the energetics is needed to predict the 3D structure from the amino acid sequence or to modify the structure by protein engineering. Recent developments are discussed: major factors are reviewed and auxiliary factors are discussed briefly. Major factors include the hydrophobic factor (burial of non-polar surface area) and van der Waals interactions together with peptide hydrogen bonds and peptide solvation. The long-standing model for the hydrophobic factor (free energy change proportional to buried non-polar surface area) is contrasted with the packing-desolvation model and the approximate nature of the proportionality between free energy and apolar surface area is discussed. Recent energetic studies of forming peptide hydrogen bonds (gas phase) are reviewed together with studies of peptide solvation in solution. Closer agreement is achieved between the 1995 values for protein unfolding enthalpies in vacuum given by Lazaridis-Archontis-Karplus and Makhatadze-Privalov when the solvation enthalpy of the peptide group is taken from electrostatic calculations. Auxiliary factors in folding energetics include salt bridges and side-chain hydrogen bonds, disulfide bridges, and propensities to form alpha-helices and beta-structure. Backbone conformational entropy is a major energetic factor which is discussed only briefly for lack of knowledge.  相似文献   

15.
16.
Ab initio protein folding   总被引:3,自引:0,他引:3  
Ab initio protein folding methods have been developing rapidly over the past few years and, at the last Critical assessment of methods of protein structure prediction (CASP) meeting, it was shown that important progress has been made in generating structure from sequence. Both methods based on statistical potentials and methods using physics-based potentials have shown improvements. Most current methods use statistics-based potentials and the development of these is ongoing. Additionally, the inclusion of multiple sequence data in the algorithms in order to aid in finding the native structure is a common theme. The use of physics-based potentials is less developed, which means that less progress has been made in understanding why a sequence forms a structure.  相似文献   

17.
Chaperones are centrally involved in the control of protein structure, function, localization and transport. A flurry of scientific activity continues to examine the molecular nature of chaperone-substrate recognition and the role of auxiliary chaperones (cohort proteins) and small molecules that expedite these processes. Chaperones have been implicated in processes as diverse as protein secretion, nuclear transport, thermotolerance, the steroid receptor signal transduction pathway, T-cell receptor and major histocompatibility complex class I and II multimeric assembly and bacterial virulence.  相似文献   

18.
A number of proteins, termed chaperonins, have been identified as part of the mechanism of folding other proteins into their biologically active forms. The role of chaperonins appears to be twofold--to prevent illegitimate interactions with other proteins and to facilitate folding, possibly through an energy-dependent, catalytic function. Controlled overexpression of chaperonins may be of therapeutic value in manipulating human immune response and rescuing certain inherited human mutations.  相似文献   

19.
Mechanisms of protein folding   总被引:1,自引:0,他引:1  
Understanding the mechanism by which a polypeptide chain folds into its native structure is a central problem of modern biophysics. The collaborative efforts of experimental and theoretical studies recently raised the tantalizing possibility to define a unifying mechanism for protein folding. In this review we summarize some of these intriguing advances and analyze them together with a discussion on the new findings concerning the so-called downhill folding.  相似文献   

20.
Predicting protein folding pathways   总被引:1,自引:0,他引:1  
A structured folding pathway, which is a time ordered sequence of folding events, plays an important role in the protein folding process and hence, in the conformational search. Pathway prediction, thus gives more insight into the folding process and is a valuable guiding tool to search the conformation space. In this paper, we propose a novel 'unfolding' approach to predict the folding pathway. We apply graph-based methods on a weighted secondary structure graph of a protein to predict the sequence of unfolding events. When viewed in reverse this yields the folding pathway. We demonstrate the success of our approach on several proteins whose pathway is partially known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号