首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The protective effects of melatonin, vitamin E, and selenium alone or in combination were tested against cadmium-induced oxidative damage in rat testes. A total of 60 male rats were equally divided into five study groups, one of which acted as control receiving subcutaneous injections of physiological saline. The remaining four groups were treated with subcutaneous injections of cadmium chloride at a dose of 1 mg/kg weight. The first study group received no treatment. The second group was treated with a combination of 60 mg/kg vitamin E and 1 mg/kg sodium selenite. Group 3 was treated with 10 mg/kg melatonin, and the fourth group received a combination of vitamin E, sodium selenite, and melatonin at the doses mentioned above. After 1 month, the animals were killed, and the testes were excised for histological inspection and determination of tissue malondialdehyde and the activity of superoxide dismutase. The animals receiving no treatment showed significantly higher malondialdehyde levels and reduced activity of the enzyme (p < 0.05). Treatment with antioxidants resulted in a significant reduction in malondialdehyde when compared to the nontreated animals (p < 0.05) and an increase in the superoxide dismutase activity that was almost the same as the controls. The combination of melatonin, vitamin E, and selenium appears to have the more profound effect against cadmium-induced testicular injury.  相似文献   

2.
The present study was carried to evaluate the protective effects of melatonin alone and vitamin E with selenium combination against high dose cadmium-induced oxidative stress in rats. The control group received subcutanous physiological saline. The first study group administered cadmium chloride (CdCl2) by subcutaneous injection of dose of 1 mg/kg. The second study group administered cadmium plus vitamin E with selenium (1 mg/kg sodium selenite with 60 mg/kg vitamin E); the third study group administered cadmium plus 10 mg/kg melatonin (MLT); the fourth study group administered CdCl2 plus a combination of melatonin in addition to vitamin E and selenium for a month. Determination levels of plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), blood superoxide dismutase (SOD), creatinine alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and urea were measured in serum. In only CdCl2 administered group, the MDA, creatinine, ALT, AST, ALP, and urea levels in the serum were significantly higher than the control group (p < 0.05). Whereas in all other groups, this values were significantly lower than the only CdCl2 administered group (p < 0.05). Erythrocytes GSH-Px, serum SOD activities of only CdCl2 received group were significantly lower than the control group (p < 0.05). In conclusion, vitamin E + Se, melatonin and vitamin E, and Se, in addition to MLT combinations, had protective effects against high dose cadmium-induced oxidative damage.  相似文献   

3.
Oxidative stress is considered to be the main cause of diabetic complications. In the current study, we investigated the effect of selenium–vitamin E combination and melatonin on lipid peroxidation (LPO) and scavenging enzyme activity in the blood of streptozocin (STZ)-induced diabetic pregnant rats. Forty female Wistar rats were randomly divided into five groups. The first and second groups were used as the non-pregnant control and pregnant control groups, respectively. The third group was the pregnant diabetic group. Vitamin E plus selenium and melatonin were administered to the diabetic pregnant rats consisting fourth and fifth groups, respectively. Diabetes was induced on day 0 of the study by STZ. Blood samples were taken from all animals on the 20th day of pregnancy. LPO level was higher in diabetic pregnant rats than in control, although superoxide dismutase, catalase, and glutathione peroxidase activities were lower in diabetic pregnant animals than in control. LPO levels were lower both in the two treatment groups than in the diabetic pregnant rats, whereas selenium–vitamin E combination and melatonin caused a significant increase in the activities of these antioxidant enzymes (p < 0.01). In conclusion, vitamin E plus selenium seems to be a more potent antioxidant compared to melatonin in diabetic pregnant rats. Melatonin did not significantly affect the elevated glucose concentration of diabetic pregnant treated with melatonin group. Vitamin E plus selenium may play a role in preventing diabetes-related diseases of pregnant subjects.  相似文献   

4.
Cataract is the opacification in eye lens and leads to 50% of blindness worldwide. The present study was undertaken to evaluate the anticataract potential of Trigonella foenum-graecum Linn seeds (fenugreek) in selenite-induced in vitro and in vivo cataract. In vitro enucleated rat lenses were maintained in organ culture containing Dulbecco’s modified Eagles medium (DMEM) alone or in addition with 100 μM selenite and served as the normal and control groups, respectively. For the test group, the medium was supplemented with selenite and T. foenum-graecum aqueous extract. The lenses were incubated for 24 h at 37°C. After incubation, the lenses were processed for the estimation of reduced glutathione (GSH), lipid peroxidation product (malondialdehyde), and the antioxidant enzymes. In vivo selenite cataract was induced in 9-day-old rats by subcutaneous injection of sodium selenite (25 μmol/kg body weight). Animals in the test group were injected with different doses of aqueous extract of T. foenum-graecum 4 h before the selenite challenge. A fall in GSH and a rise in malondialdehyde levels were observed in control as compared to normal lenses. T. foenum-graecum significantly (P < 0.01) restored glutathione and decreased malondialdehyde levels. A significant restoration in the activities of antioxidant enzymes such as superoxide dismutase (P < 0.01), catalase, (P < 0.01), glutathione peroxidase (P < 0.01), and glutathione-S-transferase (P < 0.01) was observed in the T. foenum-graecum supplemented group as compared to control. In vivo, none of the eyes was found with nuclear cataract in treated group as opposed to 72.5% in the control group. T. foenum-graecum protects against experimental cataract by virtue of its antioxidant properties. Further studies are warranted to explore its role in human cataract.  相似文献   

5.
Three hundred 1-day-old avian broilers were fed on a basic diet (0.2 mg/kg selenium) or the same diet amended to contain 1, 5, 10, and 15 mg/kg selenium supplied as sodium selenite (n = 60/group). In comparison with those of 0.2 mg/kg selenium group, the percentages of annexin V-positive splenocytes were increased in 5, 10, and 15 mg/kg selenium groups. TUNEL assay revealed that apoptotic cells with brown-stained nuclei distributed within the red pulp and white pulp of the spleens with increased frequency of occurrence in 10 and 15 mg/kg selenium groups in comparison with that of 0.2 mg/kg Se group. Sodium selenite-induced oxidative stress in spleens of chickens was evidenced by decrease in glutathione peroxidase, superoxide dismutase, and catalase activities and increase in malondialdehyde contents. The results indicate that excess dietary selenium in the range of 5–15 mg/kg of feed causes oxidative stress, which may be mainly responsible for the increased apoptosis of splenocytes in chickens.  相似文献   

6.
The study was conducted to investigate the effects of dietary maternal selenomethionine or sodium selenite supplementation on performance and selenium status of broiler breeders and their next generation. Two hundred and forty 39-week-old Lingnan yellow broiler breeders were allocated randomly into two treatments, each of which included three replicates of 40 birds. Pretreatment period was 2 weeks, and the experiment lasted 8 weeks. The groups were fed the same basal diet supplemented with 0.30 mg selenium/kg of sodium selenite or selenomethionine. After incubation, 180 chicks from the same parental treatment group were randomly divided into three replicates, with 60 birds per replicate. All the offspring were fed the same diet containing 0.04 mg selenium/kg, and the experiment also lasted 8 weeks. Birth rate was greater (p < 0.05) in hens fed with selenomethionine than that in hens fed with sodium selenite. The selenium concentration in serum, liver, kidney, and breast muscle of broiler breeders, selenium deposition in the yolk, and albumen and tissues' (liver, kidney, breast muscle) selenium concentrations of 1-day-old chicks were significantly (p < 0.01) increased by maternal selenomethionine supplementation compared with maternal sodium selenite supplementation. The antioxidant status of 1-day-old chicks was greatly improved by maternal selenomethionine intake in comparison with maternal sodium selenite intake and was evidenced by the increased glutathione peroxidase activity in breast muscle (p < 0.05), superoxide dismutase activity in breast muscle and kidney (p < 0.05), glutathione concentration in kidney (p < 0.01), total antioxidant capability in breast muscle and liver (p < 0.05), and decreased malondialdehyde concentration in liver and pancreas (p < 0.05) of 1-day-old chicks. Feed utilization was better (p < 0.05), and mortality was lower (p < 0.05) in the progeny from hens fed with selenomethionine throughout the 8-week growing period compared with those from hens fed with sodium selenite. In summary, we concluded that maternal selenomethionine supplementation increased birth rate and Se deposition in serum and tissues of broiler breeders as well as in egg yolk and egg albumen more than maternal sodium selenite supplementation. Furthermore, maternal selenomethionine intake was also superior to maternal sodium selenite intake in improving the tissues Se deposition and antioxidant status of 1-day-old chicks and increasing the performance of the progeny during 8 weeks of post-hatch life.  相似文献   

7.
The aim of the study was to investigate the effect of selenium on hepatic mitochondrial antioxidant capacity in ducklings administrated with aflatoxin B1 (AFB1). Ninety 7-day-old ducklings were randomly divided into three groups (groups I–III). Group I was used as a blank control. Group II was administered with AFB1 (0.1 mg/kg body weight). Group III was administered with AFB1 (0.1 mg/kg body weight) plus selenium (sodium selenite, 1 mg/kg body weight). All treatments were given once daily for 21 days. The results showed that the activities of mitochondrial superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) in group II ducklings significantly decreased when compared with group I (P < 0.01). Furthermore, the content of hepatic mitochondrial malondialdehyde (MDA) significantly increased (P < 0.01). However, the activities of hepatic mitochondrial SOD, CAT, GSH-Px, and GR in group III ducklings significantly increased when compared with group II (P < 0.05). In addition, the content of hepatic mitochondrial MDA significantly decreased (P < 0.01). These results revealed that AFB1 significantly induced hepatic mitochondrial antioxidant dysfunction. However, sodium selenite could significantly ameliorate the negative effect induced by AFB1.  相似文献   

8.
The present study aims to evaluate the effect of selenium supplementation on lipid peroxidation and lactate levels in rats subjected to acute swimming exercise. Thirty-two adult male rats of Sprague–Dawley type were divided into four groups. Group 1, control; group 2, selenium-supplemented; group 3, swimming control; group 4, selenium-supplemented swimming group. The animals in groups 2 and 4 were supplemented with (i.p.) 6 mg/kg/day sodium selenite for 4 weeks. The blood samples taken from the animals by decapitation method were analyzed in terms of erythrocyte-reduced glutathione (GSH), serum glutathione peroxidase (GPx) and superoxide dismutase (SOD), and plasma malondialdehyde (MDA) and lactate using the colorimetric method, and serum selenium values using an atomic emission device. In the study, the highest MDA and lactate values were found in group 3, while the highest GSH, GPx and SOD values were obtained in group 4 (p < 0,001). Group 2 had the highest and group 3 had the lowest selenium levels (p < 0,001). Results of the study indicate that the increase in free radical production and lactate levels due to acute swimming exercise in rats might be offset by selenium supplementation. Selenium supplementation may be important in that it supports the antioxidant system in physical activity.  相似文献   

9.
The experiment was conducted to study the effects of different selenium (Se) sources on productive performance, serum and milk Se concentrations, and antioxidant status of sows. A total of 12 sows (Landrace×Yorkshire) with same pregnancy were randomly divided into two groups; each group was replicated six times. These two groups received the same basal gestation and lactation diets containing 0.042 mg Se/kg, supplemented with 0.3 mg Se/kg sodium selenite or selenomethionine (i.e., seneno-dl-methylseleno), respectively. The feeding trial lasted for 60 days, with 32 and 28 days for gestation and lactation period, respectively. Compared with sodium selenite, maternal selenomethionine intake significantly increased (P < 0.05) the weaning litter weight and average weight of piglet. The Se concentration in the serum, colostrum, and milk of sows were significantly higher (p < 0.05) in the selenomethionine-treated group. The antioxidant status was greatly improved in sows of selenomethionine-treated group and was illuminated by the increased total antioxidant capability (T-AOC; P < 0.05) and decreased malondialdehyde (MDA; P < 0.01) level in the serum of sows, increased T-AOC (P < 0.05), glutathione (GSH) peroxidase (P < 0.05), superoxide dismutase (P < 0.05) and GSH (P < 0.05), and MDA (P < 0.05) level in the colostrum and milk of sows. These results suggested that maternal selenomethionine intake improved Se concentration and antioxidant status of sows, thus maintain maternal health and increase productive performance after Se was transferred to its offspring.  相似文献   

10.
The present study was to investigate the efficiency of maternal selenomethionine intake on growth performance, Se distribution, and antioxidant status of pig offspring by comparing with sodium selenite. A total of 12 sows (Landrace × Yorkshire) with same pregnancy were randomly divided into two groups; each group was replicated six times. These two groups received the same basal gestation and lactation diets containing 0.04 mg Se/kg, supplemented with 0.3 mg Se/kg sodium selenite and selenomethionine (i.e., seneno-dl-methylseleno), respectively. The feeding trial lasted for 60 days, with 32 and 28 days for gestation and lactation period, respectively. Compared with sodium selenite, maternal selenomethionine intake significantly (p < 0.05) increased the daily weight gain of piglet from birth to weaning. The Se concentration in the colostrum and milk and tissue Se content of piglets were significantly higher (p < 0.05) in the selenomethionine-treated group. The antioxidant status was greatly improved in piglets of selenomethionine-treated group and was illuminated by the increased total antioxidant capability, glutathione peroxidase, superoxide dismutase, and glutathione, and decreased the malondialdehyde level in the organs of piglets. The increased (p < 0.05) triiodothyronine (T3) and decreased (p < 0.05) thyroxine (T4) concentration indicated the improved protein synthesis and energy production in the selenomethionine-treated group. The increased (p < 0.05) pancreatic digestive enzymes of protease, amylase, and lipase activities indicated that maternal selenomethionine intake may have a positive effect on the degradation and absorption of nutrients in its piglets. In summary, we concluded that maternal selenomethionine intake increased Se deposition, antioxidant status, and nutrient use efficiency, thus providing an effective way to improve the growth performance of piglets from birth to weaning.  相似文献   

11.
This study aimed to investigate whether treatments with vitamin E, L-carnitine and melatonin can protect against CCl4 and diabetes-induced hepatic oxidative stress. Hepatic oxidative stress was performed in rats through 50% v/v carbon tetrachloride (CCl4) (1 ml/kg/3days, i.p.), and through diabetes mellitus induced by streptozotocin (STZ) (40 mg/kg, i.p.). Vitamin E (100 mg/kg/day, i.p), L-carnitine (300 mg/kg/day, i.p.) and melatonin (10 mg/kg/day, i.p.) were injected for a period of 6 weeks. Thereafter, changes in serum glucose level, liver function tests, hepatic malondialdehyde (MDA) content, hepatic reduced glutathione (GSH) content, hepatic superoxide dismutase (SOD) activity, and serum total antioxidant capacity (TAC) level were evaluated. In CCl4-induced liver fibrosis, the efficacy order was melatonin > L-carnitine > vitamin E, while in STZ-induced diabetes, the efficacy order was vitamin E ≥ melatonin > L-carnitine. In conclusion, these data indicate that low dose of melatonin is more effective than high doses of vitamin E and L-carnitine in reducing hepatic oxidative stress induced by CCl4 and diabetes. Moreover, the potent effect of vitamin E in ameliorating diabetes can be linked not only to the antioxidant actions, but also to the superior effect in reducing diabetes-induced hyperglycaemia. Meanwhile, potency of L-carnitine was nearly the same in CCl4 and diabetes-induced liver damage.  相似文献   

12.
In the present study, the antioxidant potential of an ethanolic extract of Cineraria maritima and its efficacy in preventing selenite-induced cataractogenesis were assessed in vitro and in vivo. In the in vitro phase of the study, lenses dissected out from the eyes of Wistar rats were incubated for 24 h at 37°C in Dulbecco’s modified Eagle medium (DMEM) alone (group I), in DMEM containing 100 μM of selenite only (group II), or in DMEM containing 100 μM of selenite and 300 μg/ml C. maritima extract added at the same time (group III). Gross morphological examination of the lenses revealed dense opacification in group II, minimal opacification in group III, and no opacification in group I lenses. The mean activities of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase were significantly lower in group II than in group I or group III lenses, while malondialdehyde concentration was significantly higher in group II lenses than in group I and group III lenses. In the in vivo phase of the study, dense opacification of lenses was noted in all rat pups (100%) that had received a single subcutaneous injection of sodium selenite alone (19 μM/kg body weight) on postpartum day 10, whereas cataract formation occurred in only 33.3% of rat pups that had received selenite as well as an intraperitoneal injection of the extract of C. maritima (350 mg/kg body weight) for five consecutive days. These observations suggest that the ethanolic extract of C. maritima may prevent experimental selenite-induced cataractogenesis.  相似文献   

13.
Ulcerative colitis increases oxidative damage accompanied by production of free oxygen radicals. Selenium (Se) and vitamin E are two natural antioxidants. The present study was undertaken to investigate the possible protective role of Se and vitamin E combination in experimental colitis induced by acetic acid (AA) in rats. This study was carried out on three groups, namely the first (control), the second (experimental colitis group, 2 ml 5% acetic acid), and the third groups (2 ml 5% acetic acid, vitamin E (100 mg/kg body weight (bw)) plus Se (0.2 mg/kg bw)). The activities of catalase (CAT), prolidase (PRS), myeloperoxidase (MPO), total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), total thiol (T-SH) were determined in plasma and colon samples. Macroscopic and microscopic damages in colon were increased by AA treatment (p < 0.01 and p < 0.01, respectively), whereas they were decreased by selenium and vitamin E treatment (p < 0.05 and p < 0.01, respectively). The activities of CAT and PRS in the plasma and colon were significantly affected (p < 0.05 and p < 0.01) by treatment of AA, Se, and vitamin E. MPO activity in colon was increased (p < 0.01) by AA treatment and decreased (p < 0.05) by Se and vitamin E administration. The values of TOS and OSI in plasma were increased (p < 0.5) by AA. The TAC and T-SH in colon were decreased (p < 0.05) by AA and increased (p < 0.05) by Se and vitamin E. Based upon these results, Se and vitamin E may play an important role in preventive indication of the oxidative damage associated by acetic acid caused inflammation.  相似文献   

14.
Three hundred and sixty healthy Ross × Ross 1-day-old broilers were used to study the effects of zinc glycine chelate (Zn-Gly) on oxidative stress, contents of trace elements, and intestinal morphology. All broilers were randomly assigned to six treatment groups, which replicates three times. Diets were as follows: (1) control (containing 29.3 mg zinc (Zn)/kg basic diet (0–21 days) and 27.8 mg Zn/kg (22–42 days)); (2) basic diet plus 30 mg Zn/kg from Zn-Gly; (3) basic diet plus 60 mg Zn/kg from Zn-Gly; (4) basic diet plus 90 mg Zn/kg from Zn-Gly; (5) basic diet plus 120 mg Zn/kg from Zn-Gly; and (6) positive control, basic diet plus 120 mg Zn/kg from zinc sulfate (ZnSO4). The results showed that the addition of 90 or 120 mg/kg Zn-Gly led to an improvement of activity of Cu/Zn superoxide dismutase and glutathione peroxidase and a reduction of malondialdehyde content in livers at 21 and 42 days. With 90 mg/kg Zn-Gly, the content of sera zinc increased by 17.55% (P < 0.05) in 21-day broilers and 10.77% (P > 0.05) in 42-day broilers compared with that of the control. Adding 120 mg/kg Zn-Gly or ZnSO4 to broilers' diets greatly enhanced the content of zinc in feces at 21 days (P < 0.05) and at 42 days (P < 0.05). For 42-day chickens, increased villus height and decreased crypt depth of the jejunum could be observed in the second growth stage of broilers fed with 90 mg/kg Zn-Gly. Also, intestinal wall thickness decreased (P < 0.05). In addition, adding 90 mg/kg Zn-Gly to the diet markedly elevated villus length of duodenum and decreased crypt depth of ileum (P < 0.05) in 42-day broilers.  相似文献   

15.
The purpose of this study was to examine oxidative stress induced by dietary vanadium in the mucosa of different parts of intestine including duodenum, jejunum, ileum, and cecal tonsil. A total of 420 1-day-old avian broilers were divided into six groups and fed on a corn–soybean basal diet as control diet or the same basal diet supplemented with 5, 15, 30, 45, and 60 mg/kg vanadium as ammonium metavanadate. During the experimental period of 42 days, oxidative stress parameters were determined for both control and experimental groups. The results showed that malondialdehyde content was significantly higher (p < 0.05 or p < 0.01) in 30, 45, and 60 mg/kg groups than in control group. In contrast, the activities of superoxide dismutase, catalase, and glutathione peroxidase, and ability to inhibit hydroxyl radical, and glutathione hormone content were significantly decreased (p < 0.05 or p < 0.01) mainly in 45 and 60 mg/kg groups in comparison with those of control group. However, the abovementioned oxidative stress parameters were not significantly changed (p > 0.05) in 5 and 15 mg/kg groups. It was concluded that dietary vanadium in excess of 30 mg/kg could cause obvious oxidative stress in the intestinal mucosa, which could impact the antioxidant function of intestinal tract in broilers.  相似文献   

16.
The aim of this study was to determine the serum concentrations of selenium, vitamin E, and total- and lipid-bound sialic acid (LBSA) in lambs with white muscle disease (WMD) before and after treatment with a commercial preparation containing selenite and vitamin E. Fifteen lambs with WMD and ten control animals were used as research materials. Blood samples were collected from both groups before- and 1 month after treatment for Se analysis by fluorimetry, whereas vitamin E and sialic acid were measured by HPLC and spectrophotometry, respectively. Compared to controls, in the diseased animals, there was a significant increase of serum total sialic acid (TSA) and LBSA, together with significant decreases of serum Se and vitamin E concentrations (p < 0.001). One month after treatment, a reversal of trend was observed with decreases of TSA and LBSA and increases of Se and vitamin E concentrations. The TSA and LBSA levels, however, remained significantly higher than those of the controls, p < 0.05 and 0.001, respectively. The Se and vitamin E concentrations of the treated animals were the same as those of controls. This is the first study on total and LBSA concentrations in lambs with WMD, showing that these markers can be used in the prognosis of the disease.  相似文献   

17.
Effects of melatonin, extremely-low-frequency magnetic field (ELF-MF), and their combination on AT478 murine squamous cell carcinoma line were studied. Manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (Cu/ZnSOD), and glutathione peroxidase (GSH-Px) were used as markers of cells antioxidative status, and malondialdehyde (MDA) level was used as a marker of lipid peroxidation. After melatonin treatment, antioxidative enzyme activities were increased and MDA level was decreased. Application of ELF-MF on treated cells caused an increase of both superoxide dismutases activity and MDA level, but influence of ELF-MF on GSH-Px activity was negligible. All enzyme activity in culture medium containing melatonin (10−3, 10−4, 10−5 M) after exposure to ELF-MF were significantly diminished compared to cells treated only with melatonin. Also MDA levels after combined treatment with melatonin and ELF-MF were significantly decreased. Observed changes were statistically significant (p<0.05). These results strongly suggest that ELF-MF attenuates antioxidative actions of melatonin on cellular level.  相似文献   

18.
Acetyl-l-carnitine (ALCAR) has been shown to prevent experimental selenite cataractogenesis, a manifestation of oxidative stress, but little is known about its potential in other settings of oxidative stress. The present study was based on the hypothesis that ALCAR prevents carbon tetrachloride (CCl4)-induced oxidative stress in vital tissues. Male albino Wistar rats were divided into three groups, each of six rats. Group I (control) rats received only vehicle (1 ml/kg b.w.) for 4 days; Group II (CCl4-exposed, untreated) rats received CCl4 (2 ml/kg b.w.) on the second and third days and vehicle on the first and fourth days; Group III (CCl4-exposed, ALCAR-treated) rats received ALCAR (200 mg/kg b.w.) for 4 days and CCl4 on the second and third days. All administrations were made intraperitoneally. After the experimental period, significantly (P < 0.05) elevated mean serum levels of aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase were observed in Group II rats when compared to Group I and Group III rats. The mean levels of vitamin C, vitamin E, and reduced glutathione and the mean activities of superoxide dismutase, catalase, and glutathione peroxidase were significantly (P < 0.05) lower in samples of hemolysate and of liver, kidney, and brain tissues of Group II rats than those in Group I and Group III rats. The mean level of lipid peroxidation was significantly (P < 0.05) higher in Group II rats than that in Group I and Group III rats. Moreover, the CCl4-induced upregulation of inducible nitric oxide synthase expression was prevented by ALCAR in the liver and brain tissues. These results suggest that ALCAR is able to prevent the CCl4-induced oxidative stress.  相似文献   

19.
Extracellular adenosine 5′-triphosphate (ATP) and its breakdown products, adenosine 5′-diphosphate (ADP) and adenosine, have significant effects on a variety of biological processes. NTPDase enzymes, responsible for adenine nucleotides hydrolysis, are considered the major regulators of purinergic signaling in the blood. Previous work by our group demonstrated that ATP and ADP hydrolysis in rat blood serum are higher during the dark (activity) phase compared to the light (rest) phase. In nocturnal animals (e.g., rats), important physiological changes occur during the dark phase, such as increased circulating levels of melatonin, corticosterone, and norepinephrine (NE). This study investigated the physiological effects, in vivo and in vitro, of melatonin, dexamethasone, and NE upon nucleotides hydrolysis in rat blood serum. For in vivo experiments, the animals received a single injection of saline (control), melatonin (0.05 mg/kg), dexamethasone (0.1 mg/kg), or NE (0.03 mg/kg). For in vitro experiments, melatonin (1.0 nM), dexamethasone (1.0 μM), or NE (1.0 nM) was added directly to the reaction medium with blood serum before starting the enzyme assay. The results demonstrated that ATP and ADP hydrolysis in both in vitro and in vivo experiments were significantly higher with NE treatment compared to control (in vitro: ATP = 36.63%, ADP = 22.43%, P < 0.05; in vivo: ATP = 44.1%, ADP = 37.28%, P < 0.001). No significant differences in adenine nucleotides hydrolysis were observed with melatonin and dexamethasone treatments. This study suggests a modulatory role of NE in the nucleotidases pathway, decreasing extracellular ATP and ADP, and suggests that NE might modulate its own release by increasing the activities of soluble nucleotidases.  相似文献   

20.
Fluoride (F) becomes toxic at higher doses and induces some adverse effects on various organs, including brain. The mechanisms underlying the neurotoxicity caused by excess fluoride still remain unknown. The aims of this study were to examine F-induced oxidative stress (OS) and role of melatonin (MEL) and buffalo pineal proteins (PP) against possible F-induced OS in brain of rats. The 24 rats were taken in present study and were divided into four groups: control, F, F + PP, and F + MEL. The F group was given 150 mg/L orally for 28 days. Combined 150 ppm F and 100 μg/kg BW (i.p.) PP and F (150 ppm) + MEL (10 mg/kg BW, i.p.) were also administered. The activities of enzymatic, viz., superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR), and non-enzymatic, viz., reduced glutathione (GSH) concentration, and the levels of malondialdehyde (MDA) in the brain tissue were measured to assess the OS. Fluoride administration significantly increased brain MDA compared with control group, while GSH levels were decreased in fluoride-treated groups, accompanied by the markedly reduced SOD, GPx, GR, and SOD activity. Buffalo PP and MEL administration caused brain MDA to decrease but caused SOD, GPx, GR, GSH, and CAT activities to increase to significant levels in F-treated animals. Together, our data provide direct evidence that buffalo PP and MEL may protect fluoride-induced OS in brain of rats through mechanisms involving enhancement of enzymatic and non-enzymatic antioxidant defense system. Therefore, this study suggested that PP and MEL can be useful in control of neurotoxicity induced by fluoride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号