首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
疫苗接种是人类历史上最为成功的医疗干预措施。近年来,疫苗研发出现了突破性进展,国内外上市了多种针对重要传染病的新型疫苗。尽管如此,疫苗研发仍面临很大挑战,传统的疫苗设计存在诸多技术缺陷,目前仍没有疫苗能够用于防控诸如艾滋病、疟疾、寨卡病毒等对人类健康具有重大威胁的传染病。随着生物信息学和结构生物学等技术的发展,疫苗设计领域出现了保护组学分析、结构疫苗学和合成生物学等新的研究方向,这些新的技术平台为今后新型疫苗的设计提供了全新的研究思路。  相似文献   

2.
乙型肝炎病毒核心蛋白HBc,可在体外自组装形成二十面体对称结构的病毒样微粒VLPs。VLPs可将外源序列重复且高密度地展示在表面,VLPs进入机体后能够快速诱导机体产生针对外源性抗原的特异性体液免疫及细胞免疫应答,具有极强的免疫原性与生物活性。因此,HBc-VLPs可以作为一种安全、有效的疫苗载体。文中设计了一种能够实现与抗原定点偶联的HBc-VLPs,并开发了一套高效制备HBc-VLPs的方法。通过定点突变技术,使翻译后的多肽序列第80位氨基酸由Ala变为Cys,在HBc-VLPs的主要免疫显性区域引入一个定点交联位点,构建了原核表达载体pET28a(+)-hbc,表达、纯化获得了高纯度的HBc(A80C) 单体蛋白;在PB缓冲体系中,HBc(A80C) 蛋白自组装形成HBc-VLPs纳米粒子。粒度仪的测定结果表明,HBc-VLPs纳米微粒的平均粒径为29.8 nm,透射电子显微镜观察到HBc-VLPs形成粒径约为30 nm的球形微粒,其形态与天然的HBV微粒相似。以流感病毒M2e抗原肽为模式抗原,通过Sulfo-SMCC氨基-巯基双功能交联剂,将M2e定点连接于HBc-VLPs通过突变引入的Cys残基处,制备了M2e-HBc-VLPs模式疫苗,通过细胞荧光示踪,验证了HBc-VLPs结构的完整性与M2e的正确交联。动物免疫实验表明该疫苗能够有效刺激小鼠产生抗原特异性的IgG抗体,验证了疫苗载体HBc-VLPs的有效性。研究结果为HBc-VLPs作为疫苗载体的研究奠定了基础,能够促进HBc-VLPs载体疫苗的研发以及HBc-VLPs在其他领域的应用。  相似文献   

3.
目的:21世纪以来,随着合成生物学的高速发展及其所遇到的问题,开发下一代DNA合成技术已经成为了必然趋势。基因芯片技术和DNA大片段组装技术是建立下一代DNA合成平台的关键技术力量。方法:为了开发具有工业化标准的DNA芯片一基因组合成平台,我们首次利用电化学DNA芯片和DNA大片段组装技术合成了72kb的Ostreococcusmud的全叶绿体基因组。结果:首先,我们使用电化学DNA芯片合成仪合成了564条150bp的OligoMix,并成功扩增分离了其中96%的Oligo序列,剩下的基因组序列是通过传统的固相亚磷酰胺三脂合成法合成。在此基础上,我们利用DNA重组技术将564条150bpOligo片段分三步克隆到了一个pGSYN系统。通过高通量测序,我们证实叶绿体基因组被成功地人工合成。整个合成成本大约是目前传统基因合成成本的10%.20%。结论:研究证实基因芯片技术和DNA大片段组装技术的应用是能够明显的降低现阶段基因组合成工艺的成本。新技术的成熟推广和成本的有效控制也会进一步加速科学家对基因组功能的深入研究以及合成生物学的质的飞跃。  相似文献   

4.
口蹄疫目前在世界上特别是在亚、非、拉美地区仍然是构成严重经济问题的一个病害,许多国家在大力研制和开发高效、安全的疫苗,包括用遗传工程手段制备的疫苗。近年来由于运用快速的核酸序列分析、重组DNA和单克隆抗体等新技术,使我们对口蹄疫病毒的基因组结构和抗原结构有了更多的了解,这对研制新型疫苗有直接的指导意义;另一方面,合成多肽的应用在模拟病毒抗原决定子及开发新型疫苗上也正崭露头角。  相似文献   

5.
为了寻找更安全有效的疫苗,美国亚利桑那州立大学的科学家利用DNA纳米技术开发了一类全新的合成疫苗,展示了这一技术的广阔前景。这一类新合成疫苗能够通过自组装的三维DNA纳米结构进行安全有效的运输,该成果发表在((NanoLetters))杂志上。  相似文献   

6.
合成生物学具有巨大发展潜力,作为一门新兴学科,它有效结合了科学与工程,在生物制药、环保、农业、物质能源等方面发挥了巨大的作用。而DNA组装技术是合成生物学中的关键技术,DNA组装技术研究进展极大的限制了合成生物学的快速发展本文在简述合成生物学发展的基础上,基于DNA组装的基本理念,对主要DNA组装技术发展情况及其在合成生物学发展中的意义及应用进行了研究,为DNA组装技术的应用发展提供参考与借鉴。  相似文献   

7.
DNA组装技术     
DNA组装是合成生物学研究的核心技术。随着合成生物学的发展,研究者开发了依赖于DNA聚合酶或DNA连接酶的不同DNA组装技术;为了降低组装成本和便于实现DNA组装的自动化,也发展了一些非酶依赖的DNA组装技术;而几百kb到Mb的大片段DNA的组装则多数依赖于微生物体内重组。文中主要综述了酶依赖、非酶依赖和体内同源重组三类DNA组装技术及其发展情况。  相似文献   

8.
合成生物学旨在应用工程学的研究思路及手段去设计或改造生物系统,是一个综合了科学与工程的拥有发展潜力的新兴学科,在生物医药、农业、能源、环保等方面发挥着巨大作用。DNA组装技术是合成生物学中的关键技术,也是合成生物学快速发展的限制性技术。综述了众多DNA组装技术的发展及其在合成生物学研究中的意义和应用。  相似文献   

9.
随着疫苗研发技术的发展,新型疫苗在传染病的预防中得到了广泛应用。由于新型疫苗安全性良好,因此其在烈性病疫苗的应用中有着得天独厚的优势,然而研制新型疫苗的前提是筛选出保护性抗原。随着各种组学研究的发展,针对真核生物的多种生物信息学方法代表着最前沿的技术手段。相对于真核细胞,病毒具有更为简单的结构,对应着相对简单的研究方法,未来的保护性抗原筛选策略,需要结合生物信息学和传统分子生物学方法的优势。本文分别从宿主和病毒入手,论述了病毒保护性抗原的筛选策略,列举了一系列基于真核细胞开发的可能用于保护性抗原筛选的生物信息学方法,并总结了应用保护性抗原进行新型疫苗设计的案例,以便加深对病毒保护性抗原筛选策略的认知,为新型疫苗的研发提供借鉴。  相似文献   

10.
史晏榕  孙宇辉 《微生物学通报》2015,42(11):2229-2237
DNA克隆和组装技术是重要的分子生物学工具。近年来,随着合成生物学的飞速发展,对大片段DNA元件的快速有效组装就显得尤为关键。同时,各种DNA克隆和组装技术也竞相发展起来。通过对基于非典型酶切连接、PCR、同源重组、单链退火拼接等原理发展起来的各种DNA克隆和组装技术进行综述,为合成生物学的进一步发展提供有效的操作工具。  相似文献   

11.
【背景】禽多杀性巴氏杆菌(Pasteurella multocida)引发的禽霍乱疫情造成了巨大的危害,而现有培养基存在培养菌密度较低的问题。【目的】研制高抗原活性的禽多杀性巴氏杆菌疫苗培养基。【方法】通过单因素试验、Plackett-Burman试验和响应面分析方法对禽多杀性巴氏杆菌培养基的成分进行调整,并对不同发酵阶段的菌体进行免疫原性测定。最后使用该培养基培养细菌后制备疫苗并通过动物攻毒试验评价其保护效果。【结果】使用研制的培养基培养禽多杀性巴氏杆菌,活菌密度能够在6 h达到约1.84×1010 CFU/mL,增菌效果是对照培养基的2.6倍;免疫原性测定结果显示在生长平台期菌体的抗原活性最高;攻毒试验表明制备的疫苗能够很好地抵抗禽多杀性巴氏杆菌的侵袭。【结论】研制出了高抗原活性的禽多杀性巴氏杆菌疫苗培养基,为疫苗的生产奠定了基础。  相似文献   

12.
疫苗投递的新策略   总被引:1,自引:0,他引:1  
近年旨在开发新的疫苗投递技术的研究越来越活跃,其目标是建立一种最适宜的方法,这种方法能将靶抗原以一定的方式呈递至免疫系统,使这种抗原能够刺激产生抵抗或治疗特定疾病的免疫应答。针对这种总的目标已经制定出一些不同的策略,某些方案仍是经验性的,对其原理还认识不足,而另外一些则比较合理,例如模拟体内自然感染或者是靶向免疫系统的特殊特性。本文对以下三类投递系统进行了综述:①佐剂及其组成配方;②抗原载体,包括活的弱毒微生物和合成的载体;③用于疫苗投递的器械。  相似文献   

13.
旨在体外组装酵母菌表达的gp96 (Recombinant gp96,rgp96) 蛋白与B16.F10黑色素瘤抗原,大量制备新型gp96肿瘤疫苗,并研究其诱导的特异性抗肿瘤免疫应答。利用体外组装的rgp96-肿瘤抗原复合物免疫C57BL/6小鼠,并通过酶联免疫斑点实验、细胞因子染色、杀伤实验技术进行分析,结果显示与单纯rgp96或肿瘤抗原免疫组相比,体外组装的rgp96-肿瘤抗原复合物免疫能够显著抑制B16肿瘤的生长,而且能够明显提高肿瘤特异性T细胞活性。rgp96-肿瘤抗原复合物的抗肿瘤免疫活性与从肿瘤组织中提取的gp96接近。研究结果为大量制备新型gp96肿瘤疫苗提供了依据。  相似文献   

14.
合成生物学作为一门交叉学科,通过设计和组装生物原件,从而制造出新的生物系统。合成生物学技术在食品质量安全以及食品废物处理等问题中的应用,将进一步推动食品行业的持续创新,为食品行业的发展提供新的思路和活力。本文回顾了工程化生物合成体系和基因编辑技术的发展,阐释了合成生物学技术在食品行业中应用的可行性,重点介绍了合成生物学技术在改善食品营养风味、高效处理食品废物、生产可降解包装材料及检测食品质量等中的应用,展望了合成生物学面向食品生产的应用前景和挑战,并对合成生物学的实际应用提出了建议。  相似文献   

15.
RNAi技术广泛应用于防治人类多种疾病病原的药物和疫苗开发中,并取得了巨大的成果。流感病毒极易发生抗原漂移和抗原转变,这给抗流感病毒药物和疫苗的研制提出很大的挑战。RNAi技术的出现给流感的防治提供了新的思路。对近年来国内外利用RNAi技术开发抗流感病毒药物和新型流感疫苗研究现状及前景进行综述,以期为流感的综合防治研究提供参考。  相似文献   

16.
合成生物学旨在建立一套完整的工程理论和方法,通过设计和组装基本生物学元件,更为有效地实现复杂生物系统的设计,并使其完成可编程的生物学功能。近年来随着可编程基因组元件的出现,特别是CRISPR和CRISPRi技术平台的建立和完善,使得合成生物学进入了一个全新发展的时期。本文重点综述CRISPR等基因组编辑和调控技术,其在构建可编程生物学元件和复杂基因线路的应用以及合成生物学在医学中(称为医学合成生物学)的发展前景。  相似文献   

17.
为了研制A型塞内卡病毒 (Senecavirus A,SVA) 的病毒样颗粒 (Virus-like particles,VLPs) 疫苗,以SVA田间流行毒株CH-FJ-2017结构蛋白基因序列为研究对象,构建了能够同时表达SVA的3种结构蛋白VP0、VP1和VP3的单个原核重组表达质粒pET28a-SVA-VP031。通过大肠杆菌Escherichia coli表达、亲和层析纯化和体外自组装,获得SVA VLPs。透射电子显微镜鉴定显示,SVA的3种结构蛋白在体外能够自组装成直径约25–30 nm的VLPs,并且动物免疫试验结果表明,该VLPs能够有效刺激豚鼠产生高水平的抗原特异性中和抗体。上述研究结果为SVA VLPs疫苗的研制奠定了基础。  相似文献   

18.
产业动向     
<正>依生生物完成治疗性乙肝疫苗临床一期实验依生生物制药有限公司自主研发的兼具预防和治疗性两项功能的新一代乙型肝炎疫苗顺利完成临床一期实验。该疫苗产品是依靠依生生物自主开发的Toll样受体3(TLR3)激动剂佐剂技术平台研制的,该技术平台在2013年被国家科技部列为"国家重大新药创制"项目,并已经成功应用于多项新一代疫苗产品的开发,在临床上展现出良好的有效性和安全性。  相似文献   

19.
宠物疫病特别是人兽共患病严重危害着宠物健康和公共卫生安全。通过对我国宠物疫苗研发和应用现状进行分析,提出关于开展疫苗质量监控技术和免疫抗体检测技术研究,以建立宠物疫苗质量监控体系和免疫抗体监测体系的建议。免疫试纸快速检测技术是一种敏感、快捷的一步法检测技术,适用于多种分析物的快速、低成本即时检测。本实验室建立了抗原、抗体和半抗原3类靶标物的免疫试纸快速检测技术体系,研制成功动物疫病抗原、抗体快速检测试纸系列产品,真正实现了长期以来人们在检测技术领域所追求的"特异、敏感、快速、简便"的目标,为实现动物疫病快速诊断和实时监测提供技术支撑。  相似文献   

20.
杨星钰  薄洪  舒跃龙 《病毒学报》2012,28(3):311-316
乙肝病毒核心抗原(Hepatitis B virus core antigen,HBcAg)是乙肝病毒的核壳结构蛋白,由183~185个氨基酸组成,大小约21~23kD。HBcAg由于其能自我组装成病毒样颗粒(Virus-like particle,VLP)、高表达、易纯化以及强免疫原性等特点,使其成为一个高效安全且应用广泛的VLP载体,可用于各种病原的疫苗研发。发展至今已有数十种病毒、细菌以及寄生虫的相关基因的抗原表位成功表达在HBcAg VLP颗粒上,成为新型疫苗研发的重要平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号