首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
线粒体DNA复制及其调控   总被引:1,自引:0,他引:1  
从线粒体DNA复制的模型与机制、复制的调控、复制忠实性及其损伤修复3个方面对近年来的研究文献进行了总结.在复制的模型与机制方面,对传统的D环复制的细节有了更深入的了解,新的实验方法的结果显示,在哺乳动物中还存在着链结合单向复制和链结合双向复制2种模型.在线粒体DNA复制的调控方面,近年来研究较多的调控因子主要包括mtDNA聚合酶γ、线粒体单链结合蛋白(mtSSB)、引物酶、解旋酶、连接酶、拓扑异构酶、转录因子mtTFA等,介绍了这些因子的最新研究进展及调控机制;对mtDNA复制时期和拷贝数量调控机制的研究也有突破,确定了Abf2p是mtDNA复制时期与拷贝数目的调控因子.在mtDNA复制的忠实性及其损伤修复研究方面,主要涉及到DNA Polγ的校正功能、错配修复、重组修复、DNA切除修复等,在mtDNA损伤修复中仅存在碱基切除修复机制,缺少核苷酸切除修复机制.  相似文献   

2.
螺旋藻多糖对核酸内切酶活性和DNA修复合成的增强作用   总被引:26,自引:0,他引:26  
本文用核酸内切酶实验和放射自显影术研究了螺旋藻水溶性多糖对DNA切除修复的效应。结果表明,该多糖能显著增强辐射引起DNA损伤的切除修复活性和程序外DNA合成(UDS)。考察切除修复的时程,发现螺旋藻多糖的存在不但能加快损伤DNA切除反应和UDS的初时速度,而且能延缓以上两个重要修复反应的饱和。  相似文献   

3.
DNA损伤修复基本方式的研究进展   总被引:6,自引:0,他引:6  
DNA损伤修复基因可修复由不同原因导致的DNA损伤.从而保护遗传信息的完整性。DNA损伤修复有3种基本形式,即碱基切除修复、核苷酸切除修复和错配修复。本文综述了DNA损伤修复3种基本形式的研究进展情况并讨论了DNA链断裂重组和重接合修复及DNA聚合酶绕道修复DNA损伤。  相似文献   

4.
本文用两种DNA介导的基因转移法(DNA—磷酸钙共沉淀法和电脉冲刺激法),将具有切除修复功能的人HeLaS3细胞的DNA,植入切除修复缺陷的着色性干皮症(XP)细胞中。实验结果表明:植入HeLaS3 DNA后,可以部份恢复XP细胞DNA切除修复的功能,提高其对紫外线辐射损伤的抗性。表现为转化细胞在UV_(254)照射后存活率的显著升高和非周期DNA合成能力的增强。  相似文献   

5.
真核DNA连接酶(DNA ligase)通过催化ATP依赖的双链DNA切口连接而在DNA复制、重组和修复过程中发挥了重要作用.DNA连接酶Ⅲ(Lig3)是一种独特性的连接酶,既可定位于细胞核,又可定位于线粒体.Lig3通过与DNA修复蛋白XRCC1作用而参与了碱基切除修复和其他单链断裂修复.但Lig3以XRCC1不依赖方式在线粒体DNA完整性保持方面发挥了更为重要的作用.这些研究为Lig3功能和DNA修复研究提供了新的视野.  相似文献   

6.
DNA切除修复与转录偶联   总被引:1,自引:0,他引:1  
细胞DNA受到某些环境理化因子损伤后,其中活性转录基因和DNA转录链上的损伤被优先切除修复,这种DNA选择性修复直接与基因转录过程偶联.在大肠杆菌中已分离到实现此功能的转录修复偶联因子(TRCF),是由mdf基因编码的一种具有ATPase活性的DNA结合蛋白.在真核细胞中,发现某些DNA修复蛋白也在DNA转录中起作用,如人DNA切除修复基因ERCG-3编码产物,是转录因子TFⅡH中最大亚基p89,酵母切除修复基因RAD3就是编码因子b的最大亚基p85.  相似文献   

7.
重离子辐照通过直接和间接作用导致生物体DNA产生损伤,包括DNA的链断裂、碱基的插入或丢失以及氧化损伤等.DNA损伤直接影响复制、转录和蛋白质合成,同时还是突变的重要原因,因此,DNA损伤修复系统尤为重要.在酿酒酵母中,这些损伤主要是通过同源重组修复(homologous recombination repair,HRR)、碱基错配修复(mismatch repair,MMR)和碱基切除修复(base excision repair,BER)等途径来修复的.作为真核生物研究的模式生物,对于酿酒酵母DNA损伤修复的HRR、MMR和BER途径研究颇多,也不断有一些新的成果出现,特别是对于相关途径的完善和相关蛋白的深化更是研究热点,在此对近年来有关重离子辐照酿酒酵母DNA损伤修复途径方面的研究做一综述.  相似文献   

8.
DNA甲基化作为动植物体内一种重要的表观遗传修饰形式,在调控基因表达、维持基因组的稳定性等方面发挥重要的生物学作用。固有DNA甲基化水平和模式的变化会导致生物的表型异常甚至死亡。而5-甲基胞嘧啶的水平和模式是由DNA甲基化和去甲基化共同决定的。DNA去甲基化可以分为主动去甲基化与被动去甲基化,而基因组甲基化模式的形成主要依赖于主动去甲基化。本文综述了生物体内DNA主动去甲基化五种潜在机制:DNA转葡糖基酶参与的碱基切除修复途径、脱氨酶参与的碱基切除修复途径、核苷酸切除修复途径、氧化作用去甲基化与水解作用去甲基化。  相似文献   

9.
RECQL5(Rec Q protein-like 5)是Rec Q DNA解旋酶家族的一个成员,同属于DEXH-box DNA/RNA解旋酶家族。Rec Q家族中的三成员(WRN、BLM、RECQL4)基因突变与人类一些遗传疾病相关,而RECQL5基因至今未发现与人类疾病相关。近年来研究发现,RECQL5对维持DNA的稳定以及在DNA的复制、修复、重组和转录等过程中发挥着非常重要的作用。该文主要对RECQL5基因的结构及其在DNA复制、修复和转录等方面的作用进行综述。  相似文献   

10.
DNA损伤修复机制——解读2015年诺贝尔化学奖   总被引:1,自引:0,他引:1  
Tomas Lindahl, Paul Modrich和Aziz Sancar三位科学家因发现“DNA损伤修复机制”获得了2015年诺贝尔化学奖.Lindahl首次发现Escherichia Coli中参与碱基切除修复的第一个蛋白质--尿嘧啶 DNA糖基化酶(UNG); Modrich重建了错配修复的体外系统,从大肠杆菌到哺乳动物深入探究了错配修复的机制; Sancar利用纯化的UvrA、UvrB、UvrC重建了核苷酸切除修复的关键步骤,阐述了核苷酸切除修复的分子机制.DNA损伤是由生物所处体外环境和体内因素共同导致的,面对不同种类的损伤,机体启动多种不同的修复机制修复损伤,保护基因组稳定性.这些修复机制包括:光修复(light repairing);核苷酸切除修复(nucleotide excision repair, NER);碱基切除修复(base excision repair, BER);错配修复(mismatch repair, MMR);以及DNA双链断裂修复(DNA double strand breaks repair, DSBR).其中DNA双链断裂修复又分同源重组(homologous recombination, HR)和非同源末端连接(non homologous end joining, NHEJ)两种方式.本文将对上述几种修复的机制进行总结与讨论.  相似文献   

11.
维持基因组稳定是生物生存的基础。碱基切除修复(base excision repair,BER)是修复损伤DNA、维持基因组稳定的主要方式之一。碱基切除修复对结核分枝杆菌等胞内致病菌尤其重要。fpg编码碱基切除修复的关键酶。本文通过比较分枝杆菌的基因组,发现结核菌较其他非致病分枝杆菌具有更多的碱基切除修复基因。这提示碱基切除修复可能对结核菌在宿主体内存活和致病至关重要。这条途径也许是新结核病药物研发的重要靶标。  相似文献   

12.
基因组DNA是遗传的物质基础,编码的信息指导生物种系的复制延续、生命体的生长发育和代谢活动。无论是在外环境因素的应激压力下还是处于正常状态,DNA损伤时刻在发生,由此,DNA损伤修复作为重要的细胞内在机制,在维护基因组稳定性、降低癌症等人类系列重大疾病风险中发挥了不可替代作用。三位科学家汤姆·林达尔(Tomas Lindahl)、阿齐兹·桑贾尔(Aziz Sancar)、保罗·莫德里奇(Paul Modrich)因发现和揭示DNA修复及其机制的杰出贡献,获得2015年诺贝尔化学奖。本文综述了三位获奖者分别在DNA损伤的碱基切除修复、核苷酸切除修复和错配修复研究中的原创发现,以及相应的修复通路机制的描绘。此3种修复通路,主要是针对紫外线和化学物所致DNA的碱基损伤、嘧啶二聚体及加合物或者DNA复制过程中发生的碱基错误配对的修复。恰巧,2015年拉斯克基础医学研究奖授予的两位科学家,也因他们揭示了DNA损伤应答现象和机制研究的重大贡献而获奖,本文也呈现了获奖者的关键性科学发现。最后,简要展望了中国DNA损伤修复领域的发展。  相似文献   

13.
胸腺嘧啶乙二醇(thymine glycol,Tg)是常见的氧化性DNA损伤碱基之一。DNA中的Tg能够分别阻止DNA聚合酶和RNA聚合酶进行DNA复制和转录,导致相应的生物学过程终止,进而会引起细胞的死亡,因此DNA中的Tg需要被修复。核酸内切酶Ⅲ(endonuclease Ⅲ,EndoⅢ)是一种双功能DNA糖苷酶,能够切除DNA中的Tg,从而启动碱基切除修复途径进行修复DNA中的Tg。细菌、古菌和真核生物的基因组序列中均存在有EndoⅢ蛋白的编码基因。目前,源自于细菌和真核生物的EndoⅢ已有较多的研究,而古菌EndoⅢ的研究相对较少。基于目前已有的极端嗜热古菌EndoⅢ的研究报道,本文综述了极端嗜热古菌EndoⅢ的研究进展,并展望了今后的研究方向。  相似文献   

14.
屠振力  方俐晶  王家刚 《生态学报》2012,32(4):1318-1326
抗辐射菌Deinococcus radiodurans是一种对电离辐射和其他DNA损伤因子具有极强抵抗能力的细菌,是研究DNA损伤与修复的模式生物。综述了国内外在抗辐射菌研究上取得的最新研究成果,从生存环境、对DNA损伤因子的抗性、抗性机理及其损伤修复关联基因等方面报道了抗辐射菌的多样性,并探讨了该细菌高效正确的DNA损伤修复机理的相关研究成果在生命科学、农业、环境修复及医学等领域的应用前景。  相似文献   

15.
DNA损伤反应在维持细胞基因组稳定性和机体存活发挥重要作用。DNA双链断裂(Double strand breaks,DSBs)是DNA损伤最严重的形式。同源重组修复是体内参与DSBs损伤修复的重要机制之一,其中Rad51是体内参与同源重组性DNA修复的关键因子。Rad51在人类的多种肿瘤组织中高表达,如乳腺癌、非小细胞肺癌、前列腺癌等,与肿瘤的转移和恶化相关。如何有效下调肿瘤组织中的Rad51的水平,降低肿瘤细胞的DNA损伤修复能力,从而提高肿瘤治疗的疗效具有潜在的临床应用价值。本文对近年来的一个研究热点靶向Rad51在肿瘤治疗研究中的应用进行综述。  相似文献   

16.
DNA损伤与肿瘤的发生发展密切相关。当DNA损伤发生时,会触发一系列的损伤应答反应以帮助细胞生存,其中即包括对自噬的诱导。ATM、P53和PARP1等多种参与DNA损伤修复的效应因子通过影响AMPK、mTOR以及一些凋亡蛋白等启动自噬。而作为一种降解途径,自噬则可通过调节DNA修复相关蛋白的水平直接影响同源重组修复、非同源末端连接修复和核苷酸切除修复等促进DNA修复,以及通过维持细胞内稳态间接促进DNA修复,从而在正常细胞的恶性转化和肿瘤耐药等发生机制中扮演重要角色。此外,DNA修复失败时,自噬也可作为一种肿瘤细胞的程序性死亡方式。因此研究自噬通过调节DNA损伤修复而对肿瘤的影响对于理解肿瘤发生的机制和提供治疗思路都有重要意义。  相似文献   

17.
内外环境中各种因素如电离辐射、紫外辐射、氧化剂、烷化剂等都可以造成白念珠菌DNA的损伤。如果DNA的损伤得不到有效的修复,便会造成突变。白念珠菌的突变率很高,但并不是所有DNA受损伤的细胞都会表现出突变型性状,这跟其自身的修复系统有很大关系,主要包括切除修复、错配修复及双链断裂修复等途径,使得绝大多数损伤能够及时修复,从而维持DNA的完整性与稳定性。白念珠菌DNA的损伤修复可能影响其适应性、药物敏感性等表型,从而给临床感染患者的治疗增加难度。本文主要从白念珠菌DNA损伤的产生,损伤信号的传导识别及损伤修复三方面综述目前的研究进展。  相似文献   

18.
耐辐射奇球菌是迄今为止发现的对辐射抗性最强的原核生物,是研究DNA损伤与修复的模式生物.耐辐射奇球菌(Deinococcus radiodurans,DR)对于电离辐射、紫外线、干燥、H2O2以及其他一些DNA损伤剂均表现出极强的抵抗能力,对于这种超强抗性的具体机制,学界至今尚未形成定论.对DR DNA损伤修复机制的解释包括切除修复和重组修复.本文就耐辐射奇球菌DNA辐射损伤后修复机制的研究进展作一综述.  相似文献   

19.
细胞代谢或细胞应激均可以引起DNA氧化损伤。DNA氧化损伤与神经退行性疾病的发生、发展密切相关。碱基切除修复在抵抗脑细胞DNA氧化损伤中起着重要的作用。就碱基切除修复在阿尔茨海默病(Alzheimer’s disease,AD)和帕金森病(Parkinson’s disease,PD)中的作用及其机制进行综述。  相似文献   

20.
本文报告了用液体闪烁计数方法对5例华东地区的着色性干皮病病人外周血淋巴细胞进行DNA切除修复功能的研究。结果发现,这5例病人淋巴细胞中的DNA切除修复功能都有不同程度的缺陷。3例病人为正常人的50%左右,1例为正常人的15%,1例在正常人的5%以下。作者提出了紫外线诱发淋巴细胞非合成期~3H-TdR掺入指数的大小代表DNA切除修复功能的高低,并根据实验结果与临床资料分析,认为DNA修复的程度与着色性干皮病的病情进展可能存在着直接关系。这与Takebe(1978)的结论是一致的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号