首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. Glutamate decarboxylase, γ-aminobutyrate-α-ketoglutarate aminotransferase and NAD-linked and NADP-linked succinic semialdehyde dehydrogenase, all constituting the GABA (γ-aminobutyrate)-shunt pathway of glutamate metabolism are localized in the mitochondrial matrix in a streptomycin-bleached mutant of Euglena gracilis strain Z. Glutamate dehydrogenase, requiring NADP as the cofactor, was distributed in the cytoplasm. An improved version of the controlled digestion method for preparing Euglena mitochondria, which involves use of trypsin and a trypsin inhibitor and removal of broken cells before mechanical disruption of cells, is also described.  相似文献   

2.
SYNOPSIS. Mitochondria were isolated from Euglena gracilis strain Z by pressure-breakage of the cells and sucrose-cushion centrifugation. Multiple peaks (2-4) were observed in the rate of phosphorylation with Mg-ADP-phosphate concentration curves. The phosphorylative and oxidative activities were highest with NADH as the substrate, moderate with succinate, and lowest with glutamate. Inhibition of phosphorylation with 2,4-dinitrophenol and carbonyl cyanide, m-chlorophenylhydrazone gave sigmoidal concentration curves, with the extent of inhibition by DNP depending on the substrate used. Inhibition of phosphorylation by valinomycin, atractyloside, or carboxyatractyloside was only ~ 60%. Oligomycin inhibited phosphorylation in 2 phases at low and high concentrations; it inhibited Mg-ATPase in a sigmoidal fashion. Both phosphorylation and oxidation had discontinuities in Arrhenius plots at 34 C and 18 C. The relative Mg2+-dependent nucleoside triphosphatase activity was: 1 for ATP and GTP, 0.6 for ITP, 0.15 for CTP and and UTP; with Ca2+ in place of Mg2+ this activity was 0.35. Both DNP and CCCP stimulated the Mg-ATPase 50-200%. The optimal pH for the stimulation was ~ 7 regardless of the uncoupler used, and ~ 8 without the uncouplers. The few differences observed between mitochondria from Euglena and those from other sources are probably due to the fragmentation of the reticular mitochondrial structure during isolation and not to unique characteristics of these mitochondria.  相似文献   

3.
SYNOPSIS. The shock reaction of Euglena gracilis strain Z to a sudden increase in light intensity (the “direct photophobic response”) was examined by high speed cinemicrography. The response is expressed as a turning reaction toward the dorsal side of the cell, after a transduction time of 0.1–0.5 sec after the onset of stimulation. Transduction times, turning rates, and flagellar beat frequencies were measured by analyzing the filmed sequences. The experimental data are consistent with a mechanism of directional homeostasis in negative phototaxis that is based upon shading of the photoreceptor by the cell's posterior end.  相似文献   

4.
SYNOPSIS Euglena gracilis strain Z, at a concentration of 106 cells/ml and in containers of ∽ 0.1-mm thickness, spontaneously forms dynamic ring patterns in the dark. These patterns are modified differentially by illumination with red and with blue light. The red light effect is abolished by treatment with an inhibitor of photosynthesis. Pattern formation is apparently the result of chemophobic responses to oxygen dissolved in the medium. Euglena can respond to both negative and positive concentration gradients, depending upon the absolute magnitude of oxygen concentration. The photo- and chemosensory transduction systems of Euglena interact at a stage which precedes the overt expression of motor responses.  相似文献   

5.
SYNOPSIS. The 16S ribosomal RNA of the chloroplast of Euglena gracilis strain Z has been characterized in terms of its 2-dimensional electrophoretic “fingerprint” (T1 ribonuclease). Over 100 spots were resolved on the “fingerprint” and each spot was characterized as to which RNA oligonucleotide fragment(s) it contained. When compared to similar analyses of prokaryotic 16S rRNAs and eukaryotic cytoplasmic 18S rRNAs, the chloroplast 16S rRNA was a typically prokaryotic RNA, but bore little if any relationship to eukaryotic 18S rRNAs. Therefore, the cistrons for chloroplast 16S rRNA are related to the equivalent prokaryotic cistrons, but, apparently, are not related to the equivalent eukaryotic cistrons. Among the organisms available for comparison, the Euglena chloroplast 16S rRNA appears most closely related to the 16S rRNA of the eukaryote, Porphyridium cruentum (a red alga), and at least distantly related to the 16S rRNAs of the blue-green algae and perhaps also to the bacilli.  相似文献   

6.
SYNOPSIS. In populations of Euglena gracilis strain Z synchronized by cultivation on a repetitive light-dark cycle, chloroplasts undergo cyclic changes in structure. During most of the light period chloroplasts are relatively compact with closely appressed lamellae; during the dark (division) period the chloroplasts become quite distended. This change persists for at least one cycle even when the cells are left in continuous light, suggesting that the periodicity may be related more to the age of the cell than to a direct effect of light. In addition, the pyrenoid in synchronized cells has a transient existence, being present only in the first half of the light period.  相似文献   

7.
SYNOPSIS. Isozymes of malic enzyme in Euglena gracilis strain Z were analyzed by starch-gel electrophoresis. Wild-type and heat-bleached strains were cultured in the light and the dark in the presence of various carbon sources. An isozyme detectable in heterotrophic cultures was repressed by photosynthesis. A model is proposed to explain photorepression of this isozyme.  相似文献   

8.
SYNOPSIS. We demonstrated previously the presence of glyoxysomes containing the glyoxylate cycle enzymes in Euglena gracilis grown in the dark on ethanol. We have now established that the glyoxysomes of Euglena grown on hexanoate also contain the following enzymes of the pathway for β-oxidation of fatty acids: hexanoyl-CoA synthetase, 3-β-hydroxyacyl-CoA dehydrogenase and thiolase. Estimations of specific activities indicate that these enzymes are over 20 times as active in glyoxysomes as they are in mitochondria, suggesting that the β-oxidation of fatty acids occurs almost entirely in Euglena glyoxysomes under these conditions. Thus, the entire portion of the gluconeogenic pathway from fatty acid to succinate is localized in the glyoxysome of Euglena.  相似文献   

9.
SYNOPSIS. Euglena gracilis strain Z has a motor response which results in orientation with respect to the polarization of a light stimulus. Cells swim preferentially in a direction perpendicular to the plane of polarization of the stimulus. If 2 polarized stimuli are given from opposite directions, the preferred direction is, under certain circumstances, at right angles to the directions of both stimuli. Euglena also preferentially assumes an orientation that is at right angles to the force of gravity. The relationships between these responses and phototactic movements oriented with respect to the direction of the stimulus are discussed.  相似文献   

10.
SYNOPSIS. Cells of Euglena gracilis strain Z were extracted with trichloroacetic acid. Samples of gross cellular protein were hydrolyzed by a variety of reagents. Amino acids released by these procedures were analyzed and the overall composition of cell protein was quantitatively determined.  相似文献   

11.
SYNOPSIS The pattern of chloroplast development was followed in Euglena gracilis strain Z greening in media with a variety of fixed carbon and nitrogen sources. The greening pattern of cells grown in inorganic medium with added ethanol or glucose involves an inhibition of chloroplast development when compared to that of cells grown in inorganic medium alone. Several nitrogen sources were tested to ascertain their effectiveness in relieving the inhibition of chloroplast development by glucose. Of those, only 0.05% (w/v) (NH4)2 SO4 accelerated the recovery from the inhibition after most of the glucose had been removed from the medium by the cells. The other nitrogen sources tested were not effective. An inhibition of chloroplast development, similar to that observed in cells greening in the presence of glucose, was seen in cells greening in an ethanol-containing medium. These cells, however, had a different response upon the addition of 0.05% (NH4)2 SO4. They appeared to recover from the inhibition of chloroplast development, even before the ethanol was removed from the medium by the cells. A slight enhancement of chloroplast development was noted in cells greening in an inorganic medium with glycine or serine. Other amino acids tested had little or no effect.  相似文献   

12.
SYNOPSIS. The ATPase activity of isolated flagella was studied in Euglena gracilis strain Z in the presence of Mg++ or Ca++. With Mg++, the optimum activity was at pH 7 and with Ca++, at pH 9. The K m values were respectively 6.6 × 10−4 and 3.6 × 10−4. Activity was influenced also by temperature and ionic strength. Results with inhibitors of membrane ATPase suggest the presence of a specific contractile system in the flagella. Our results are compatible with a multicomponent enzymic system containing 2 active ATPases.  相似文献   

13.
SYNOPSIS. We demonstrated previously microbodies in Euglena gracilis grown in the dark on 2-carbon substrates. We have now established in Euglena the particulate nature of enzymes known in other organisms to be localized in microbodies (glyoxysomes and leaf peroxisomes). On a linear sucrose gradient the glyoxylate cycle enzymes band together at a nigner equilibrium density (1.20 g/cm3) than mitochondrial marker enzymes (1.17 g/cm3), establishing the existence in Euglena of glyoxysomes similar to those of higher plants. Glyoxylate (hydroxypyruvate) reductase and, under certain conditions, also glycolate dehydrogenase co-band with the glyoxylate cycle enzymes, suggesting that Euglena glyoxysomes, like those of higher plants, may contain peroxisomal-type enzymes. Catalase, an enzyme characteristic of microbodies from a variety of sources, was not detected in Euglena.  相似文献   

14.
SYNOPSIS. In low viscosity media, Euglena gracilis strain Z responds to a sudden change in light intensity by a cessation of forward movement, followed by a reorientation of the locomotor flagellum which results in turning of the cell around the lateral axis (photophobic response). At a viscosity interface between low [~ 1 cP (centipoise)] and high (4000 cP) media, the cells exhibit avoidance responses or become immobilized in the higher viscosity medium. Upon changing the light intensity, free swimming cells have photophobic responses, while immobilized ones undergo body contractions. For cells immersed in media of varying viscosity, the delay between light stimulation and body contraction (transduction time) is shortest at high viscosities. From 500 to 2000 cP, where the cells are capable of both movement and light-induced body contractions, there is a logarithmic dependence of the transduction time on the viscosity. The transduction time does not vary appreciably with the intensity of the primary light stimulus within a range of 0.14-1.13 kW/m2.  相似文献   

15.
The uptake of [57Co]B13 (cyanocobalamin) by Euglena gracilis strain Z (ATCC 12716) occurred in 2 distinct phases-an initial rapid phase followed by a slower secondary phase. This secondary phase appeared after the saturation of the binding sites involved in the initial rapid phase and was energy-dependent and completely inhibited by 2,4-dinitrophenot, KCN and sodium azide. the subcellular localization of labeled cyanocobalamin taken up by the cell was mostly contained in the chloroplast fraction. the time course and the saturation kinetics of B12 uptake by purified chloroplast fraction indicated that this fraction and the intact cell had a similar affinity for the vitamin B12. This suggested that the chloroplasts contained the binding sites for vitamin 12 and might regulate the uptake process in the intact cell. the kinetic properties of the overall 12 uptake mechanism suggested that the initial phase represent the binding of vitamin 12 to the available sites on the chloroplast. the secondary phase may represent the de novo synthesis of new binding sites.  相似文献   

16.
SYNOPSIS. Acetate added to autotrophic Euglena cultures changed the period length of the circadian rhythm of phototaxis. Phase shifts were induced by acetate pulses. Since transition from one metabolic state to another (autotrophic/mixotrophic) caused a phase shift or a period change, such effects possibly result from switching metabolic pathways. As suggested (Brinkmann, K., 1966. Planta 70 , 344–89), differences in the temperature responses of the rhythm in mixotrophic and autotrophic cells might also be caused by participation of different metabolic pathways with different Q10 values, e.g. dark reactions vs photochemical reactions. However the Q10 of a given dark reaction, e.g. protein synthesis, can differ in the 2 states. Therefore temperature experiments alone do not suffice for deciding whether the pathways include photochemical reactions, dark reactions, or both.  相似文献   

17.
SYNOPSIS. Chloroplast development is inhibited in Euglena gracilis strain Z, when greened in a medium containing glucose. This inhibition is reflected not only in the pattern of chlorophyll accumulation but also in the chloroplast ultrastructure and activities of the 2 light reactions of photosynthesis. Chloroplasts of cells greening in the presence of glucose are delayed in déveloping certain structures. Photosystem I activity develops at about the same rate as that of the controls during the first 48 h of greening, after which it develops at a slower rate. The rate of development of photosystem II activity in cells greening in a glucose medium lags considerably behind that of the controls until the later hours of greening. There are similarities between glucose inhibition and chloramphenicol inhibition of chloroplast development. Glucose may inhibit a step in chloroplast development ultimately controlled by the chloroplast genome.  相似文献   

18.
SYNOPSIS. Optimal assay conditions are described for 8 hydrolases of Euglena gracilis var. bacillaris, SM-L1 (streptomycinbleached) strain, 7 of which have an acid pH-optimum. Acid phosphatase, β-galactosidase, β-glucosidase, β-fucosidase, cathepsin D, RNase, DNase, and an esterase are active in cell homogenates. Amylase has very low activity, and β-glucuronidase, arylsulfatase, β, N-acetyl-glucosaminidase, α-fucosidase, and α- and β-mannosidase are inactive. Hydrolase activity increases as a culture proceeds from the midexponential to the late stationary-phase of growth, being most pronounced in the case of β-glucosidase. In cultures deprived of a utilizable carbon source, the specific activities of the hydrolases (per mg total protein or dry weight) increase. When expressed on a per cell basis, however, the activities of DNase decrease while those of β-galactosidase, cathepsin D, and RNase increase. The hydrolases appear to be involved in the adaptation of Euglena to the metabolic demands imposed by different conditions of growth.  相似文献   

19.
SYNOPSIS. The effects of phosphate starvation on the synthetic and division rates of Euglena gracilis strain Z are described. Phosphate starvation inhibits rates of the following processes, in the order: RNA synthesis > DNA synthesis > cell division > chlorophyll synthesis and plastid replication. As a consequence of the differential effect of phosphate starvation on the synthetic and division rates the average gross chemical composition of the cells is subject to continuous change.  相似文献   

20.
SYNOPSIS. Deprived of vitamin B12, Euglena gracilis strain Z ceases to divide which we believe to be a function of the light regime: division inhibition occurs more quickly in continuous light than in alternating (6L : 6D) light and not at all in total darkness. This phenomenon is dependent on the carbon source; cells grown in glutamate-malate medium do not divide regardless of the culture conditions while dl -lactate as carbon source permits growth in darkness in the absence of B12. Conditions which lead to an increased O2 or decreased CO2 tension in the medium, such as agitation in darkness or incubation in red or white light, result in inhibition of division. This inhibition can be reversed by re-transferring the cells to still culture in the dark or, in the case of light-induced blockage, by the addition of DCMU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号