首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cell division patterns in Thalassiosira fluviatilis grown in a cyclostat were analyzed as a function of temperature, photoperiod, nutrient limitation and average cell size of the population. Typical cell division patterns in populations doubling more than once per day had multiple peaks in division rate each day, with the lowest rates always being greater than zero. Division bursts occurred in both light and dark periods with relative intensities depending on growth conditions. Multiple peaks in division rate were also found, when population growth rates were reduced to less than one doubling per day by lowering temperature, nutrients, or photoperiod and the degree of division phasing was not enhanced. Temperature and nutrient limitation shifted the timing of the major division burst relative to the light/dark cycle. Average cell volume of the inoculum was found to be a significant determinant of the average population growth rate and the timing and magnitude of the peaks in division rate. The results are interpreted in the context of a cell cycle model in which generation times are “quantized” into values separated by a constant time interval.  相似文献   

2.
The characteristics of phosphate uptake and photosynthetic capacity were studied in P-limited populations of Euglena gracilis Klebs (Z), using both P-limited batch cultures in stationary phase and cyclostat cultures grown on 14:10 LD. P uptake obeyed Michaelis-Menten kinetics between 0 and 150 μM PO4 under both growth conditions. The value of Vmax was 35% lower in the dark than in the light in the stationary phase cells. The value of K8 was not affected by light conditions, and uptake was completely inhibited in the presence of 1 mm KCN. P uptake (at 2.0 μM PO4) and photosynthetic capacity showed diel periodicity with peak rates occurring just before the beginning of the dark period for P uptake, and 8 h into the light period for photosynthetic capacity. Vmax for P uptake increased by a factor of 1.5 over the light period, whereas K8 remained constant at 1.4 μM PO4. These patterns were displayed by both nondividing stationary phase cells and populations in which less than a third of the cells divided each day, indicating that the rhythmicity is not coupled to cell division.  相似文献   

3.
Chlamydomonas reinhardtii Dang, was grown in a chemostat culture under phosphate limitation. The steady state concentration of phosphate was below the detection limit (< 1 μg P/L) in all runs. The cellular content of phosphorus (Qp), polyphosphate (Qpp) and chlorophyll a increased with increasing dilution rate, and the growth rate of the alga was described by Qp as well as Qpp in the Droop model. The ratio Qpp/Qp and the activity of alkaline phosphatase were maximal at high and low growth rates, respectively. Palmelloids of Chlamydomonas were found at high dilution rates (D > 0.12 h?1) and became attached to the wall of the culture vessel. They differed from the vegetative stage in both chemical composition and growth rate. Their contents of phosphorus and chlorophyll a were low, as in the vegetative cells, which grew at a low growth rate, whereas the ration Qpp/Qp and the activity of alkaline phosphatase were comparable with those of fast growing vegetative cells. The growth rate of the palmelloids was 0.03 h?1 whereas maximum growth rate (μm) for the vegetative cells was 0.21 h?1.  相似文献   

4.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2SeO3 to nutrient enriched artificial seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10−2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga find all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

5.
The kinetics of population growth and death were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown at light intensities ranging from limitation to photoinhibition (5 W·m−2 to 160 W·m−2) in a nutrient-replete turbidostat. Steady-state growth rate (μ, or dilution rate, D) increased with light intensity from 0.44·day−1 at a light intensity of 5 W·m−2 to 0.99·day−1 at 20 W·m−2 and started to decrease above about 22 W·m−2, reaching 0.56·day−1 at 160 W·m−2. The Haldane function of enzyme inhibition fit the growth data poorly, largely because of the unusually narrow range of saturation intensity. However, it produced a good fit (P < 0.001) for growth under photoinhibition. Anabaena flos-aquae died at different specific death rates (γ) below and above the saturation intensity. When calculated as the slope of a vx−1 and D−1 plot, where vx and D are cell viability (or live cell fraction) and dilution rate, respectively; γ was 0.047·day−1 in the range of light limitation and 0.103·day−1 under photoinhibition. Live vegetative cells and heterocysts, either in numbers or as a percentage of the total cells, showed a peak at the saturation intensity and decreased at lower and higher intensities. The ratio of live heterocysts to live vegetative cells increased with intensity when light was limiting but decreased when light was supersaturating. In cells growing at the same growth rate, the ratio was significantly lower under light inhibition than under subsaturation and the cell N:C ratio was also lower under inhibition. The steady-state rate of dissolved organic carbon (DOC) production increased with light intensity. However, its production as a percentage of the total C fixation was lowest at the optimum intensity and increased as the irradiance decreased or increased. The rate and percentage was significantly higher under photoinhibition than limitation in cells growing at the same growth rate. About 22% of the total fixed carbon was released as DOC at the highest light intensity. No correlation was found between the number of dead cells and DOC.  相似文献   

6.
We investigated the relationship between daily growth rates and diel variation of carbon (C) metabolism and C to nitrogen (N) ratio under P‐ and N‐limitation in the green algae Chlorella autotrophica. To do this, continuous cultures of C. autotrophica were maintained in a cyclostat culture system under 14:10 light:dark cycle over a series of P‐ and N‐limited growth rates. Cell abundance, together with cell size, as reflected by side scatter signal from flow cytometric analysis demonstrated a synchronized diel pattern with cell division occurring at night. Under either type of nutrient limitation, the cellular C:N ratio increased through the light period and decreased through the dark period over all growth rates, indicating a higher diel variation of C metabolism than that of N. Daily average cellular C:N ratios were higher at lower dilution rates under both types of nutrient limitation but cell enlargement was only observed at lower dilution rates under P‐limitation. Carbon specific growth rates during the dark period positively correlated with cellular daily growth rates (dilution rates), with net loss of C during night at the lowest growth rates under N‐limitation. Under P‐limitation, dark C specific growth rates were close to zero at low dilution rates but also exhibited an increasing trend at high dilution rates. In general, diel variations of cellular C:N were low when dark C specific growth rates were high. This result indicated that the fast growing cells performed dark C assimilation at high rates, hence diminished the uncoupling of C and N metabolism at night.  相似文献   

7.
Oscillations in the phosphate (Pi) uptake rates for three species of green algae were examined in a P‐limited cyclostat. For Ankistrodesmus convolutus Corda and Chlorella vulgaris Beyerinck, the Pi uptake rates increased during the daytime and decreased at night. In contrast, Chlamydomonas sp. exhibited the opposite uptake pattern. Cell densities also oscillated under a light:dark cycle, dividing at a species‐specific timing rather than continuously. In general, the cell densities exhibited an inverse relationship with the Pi uptake rates. A competition experiment between A. convolutus and C. vulgaris in a P‐limited cyclostat resulted in the dominance of C. vulgaris, regardless of the relative initial cell concentrations. Chlorella vulgaris also dominated in a mixed culture with Chlamydomonas sp., irrespective of the initial seeding ratio and dilution rate. However, Chlamydomonas sp. and A. convolutus coexisted in the competition experiment with gradual decrease of Chlamydomonas sp. when equally inoculated. Mathematical expressions of the oscillations in the Pi uptake rate and species‐specific cell division gate were used to develop a simulation model based on the Droop equation. The simulation results for each of the species conformed reasonably well to the experimental data. The results of the competition experiments also matched the competition simulation predictions quite well, although the experimental competition was generally more delayed than the simulations. In conclusion, the model simulation that incorporated the effect of diel rhythms in nutrient uptake clearly demonstrated that species diversity could be enhanced by different oscillation patterns in resource uptake, even under the condition of limitation by the same resource.  相似文献   

8.
An obligate requirement for selenium is demonstrated in axenic culture of the coastal marine diatom Thalassiosira pseudonana (clone 3H) (Hust.) Hasle and Heimdal grown in artificial seawater medium. Selenium deficiency was characterized by a reduction in growth rate and eventually by a cessation of cell division. The addition of 10−10 M Na2eO3 to nutrient enriched artifical seawater resulted in excellent growth of T. pseudonana and only a slight inhibition of growth occurred at Na2SeO3 concentrations of 10−3 and 10-2 M. By contrast, Na2SeO4 failed to support growth of T. pseudonana when supplied at concentrations less than 10−7 M and the growth rate at this concentration was only one quarter of the maximum growth rate. The addition of 10−3 and 10−2 M Na2SeO4 to the culture medium was toxic and cell growth was completely inhibited. Eleven trace elements were tested for their ability to replace the selenium requirement by this alga and all were without effect. In selenium-deficient and selenium-starved cultures of T. pseudonana cell volume increased as much as 10-fold as a result of an increase in cell length (along the pervalvar axis) but cell width was constant. It is concluded that selenium is an indispensable element for the growth of T. pseudonana and it should be included as a nutrient enrichment to artificial seawater medium when culturing this alga.  相似文献   

9.
The effects of starvation and subsequent addition of phosphate-containing medium on the phosphate metabolic intermediates were studied by 31P-NMR spectroscope of perchloric acid extracts and intact cells of Heterosigma akashiwo (Hada) Hada. When orthophosphate in the medium was completely depleted the medium was enriched with orthophosphate (4.5 μM). In the phosphate starved condition, the P cell quota was 76 fmol·cell−1 and the major components of phosphate intermediates were phosphodiester, sugar phosphate and orthophosphate (Pi). After addition of Pi, rapid uptake of Pi was observed and the P cell quota increased to 108 fmol·cell−1 in 2 h, 134 fmol·cell−1 in 5 h and 222 fmol·cell−1 in 1 day after addition of phosphate. The 31P-NMR spectrum indicated that a major portion of P was stored as polyphosphate, in which the average chain length of polyphosphate increased from 10 to 20 phosphate residues in one day after addition of Pi.  相似文献   

10.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

11.
The relative influence of the photoperiod and of periodic ammonium pulses in entraining the cell division cycle in nitrogen-limited cyclostat cultures differs dramatically in Hymenomonas carterae Braarud and Fagerl, Amphidinium carteri Hulburt and Thalassiosira weissflogii Grun. We examined how each species processes an NH4+ pulse at various times during the cell cycle and the L/D cycle. Rates of NH4+ uptake and changes in cellular concentrations of NH4+, free amino acids, and protein were examined after the addition of an NH4+ pulse. Depletion of NH4+ from the medium occurred earlier when the pulse was given at the beginning of the light period than at the beginning of the dark period in H. carterae and A. carteri. Depletion took longer in the T. weissflogii cultures and the kinetics were similar during both stages of the photocycle in this species. Similarly, the temporal phasing and maximum pool sizes varied with timing of the NH4+ pulse in H. carterae and A. carteri but complete assimilation was relatively rapid. More persistent pools of NH4+ and free amino acids accumulated in T. weissflogii, and the patterns of assimilation varied little as a function of the timing of the pulse with respect to the photocycle. Although nitrogen metabolism occurred rapidly in nitrogen-limited H. carterae and A. carteri, the entrainment of the cell division cycle by the photoperiod resulted in a large degree of uncoupling between completion of nitrogen assimilation and cell division. It is hypothesized that the strong entrainment of the cell division cycle of T. weissflogii by NH4+ pulses results from a relatively slow rate of nitrogen metabolism.  相似文献   

12.
Emiliania huxleyi (strain L) expressed an exceptional P assimilation capability. Under P limitation, the minimum cell P content was 2.6 fmol P·cell?1, and cell N remained constant at all growth rates at 100 fmol N·cell?1. Both, calcification of cells and the induction of the phosphate uptake system were inversely correlated with growth rate. The highest (cellular P based) maximum phosphate uptake rate (VmaxP) was 1400 times (i.e. 8.9 h?1) higher than the actual uptake rate. The affinity of the P‐uptake system (dV/dS) was 19.8 L·μmol?1·h?1 at μ = 0.14 d?1. This is the highest value ever reported for a phytoplankton species. Vmax and dV/dS for phosphate uptake were 48% and 15% lower in the dark than in the light at the lowest growth rates. The half‐saturation constant for growth was 1.1 nM. The coefficient for luxury phosphate uptake (Qmaxt/Qmin) was 31. Under P limitation, E. huxleyi expressed two different types of alkaline phosphatase (APase) enzyme kinetics. One type was synthesized constitutively and possessed a Vmax and half‐saturation constant of 43 fmol MFP·cell?1·h?1 and 1.9 μM, respectively. The other, inducible type of APase expressed its highest activity at the lowest growth rates, with a Vmax and half‐saturation constant of 190 fmol MFP·cell?1·h?1 and 12.2 μM, respectively. Both APase systems were located in a lipid membrane close to the cell wall. Under N‐limiting growth conditions, the minimum N quotum was 43 fmol N·cell?1. The highest value for the cell N‐specific maximum nitrate uptake rate (VmaxN) was 0.075 h?1; for the affinity of nitrate uptake, 0.37 L·μmol?1·h?1. The uptake rate of nitrate in the dark was 70% lower than in the light. N‐limited cells were smaller than P‐limited cells and contained 50% less organic and inorganic carbon. In comparison with other algae, E. huxleyi is a poor competitor for nitrate under N limitation. As a consequence of its high affinity for inorganic phosphate, and the presence of two different types of APase in terms of kinetics, E. huxleyi is expected to perform well in P‐controlled ecosystems.  相似文献   

13.
The effects of starvation and subsequent addition of phosphate-containing medium on the phosphate metabolic intermediates were studied by 31P-NMR spectroscopy of perchloric acid extracts and intact cells of Heterosigma akashiwo (Hada) hada. When orthophosphate in the medium was completely depleted the medium was enriched with orthophosphate (4.5 μM). In the phosphate starved condition, the P cell quota was 76 fmol-cell−1 and the major components of phosphate intermediates were phosphodiester, sugar phosphate and orthophosphate (Pi) After addition of Pi' rapid uptake of Pi was observed and the P cell quota increased to 108 fmol. cell−1 in 2 h, 134 fmol. cell−1 in 5 h and 222 fmol. cell−1 in 1 day after addition of phosphate. The 31P-NMR spectrum indicated that a major portion of P was stored as polyphosphate, in which the average chain length of polyphosphate increased from 10 to 20 phosphate residues in one day after addition of Pi-  相似文献   

14.
A clone of Synechococcus isolated from Lake Huron and natural populations of Synechococcus from lakes Huron and Michigan were studied in 1989 to examine the diel division cycle and to provide estimates of the in situ growth rate based on the frequency of dividing cells (FDC) method. Cultured populations of Synechococcus exhibited a consistent diel division pattern with a midday/afternoon (1100–1800 h) peak in the percent of dividing cells. The maximum percent of dividing cells varied among cultures (8-27%) and was related to the growth rate. A small fraction of dividing cells (3-5%) remained throughout the dark period, suggesting that some cells were arrested in the doublet stage prior to division. The duration of division (td) ranged from 2.6-4.9 h, with a 3.7 h mean for cultures with growth rates ≥0.34 d−1 but increased to 8 h at a lower growth rate of 0.20 d−1. The diel division pattern for natural populations was very similar to the laboratory clone; an afternoon peak (1400-2100 h) in dividing cells and a small fraction of dividing cells (2-5%) remained during the dark period. The maximum percent of dividing cells for natural populations ranged from 6-10%. In situ growth rates, determined from the FDC and assuming a constant td of 3.7 h, ranged from 0.30-0.42 d−1. The FDC method may provide accurate estimates of in situ growth, particularly in environments where the growth rate is >0.34 d−1, but in lakes Huron and Michigan where growth rates can be lower and td values may increase, FDC-growth rates must be viewed with caution.  相似文献   

15.
Cell division patterns in Thalassiosira weissflogii (Grun.), Hymenomonas carterae (Braarud and Fagerl), and Amphidinium carteri (Hulburl) grown in cyclostat culture were analyzed as functions of the periodic supply of light and the limiting nutrient (ammonium) and of combinations of these two factors. In all three species, division patterns were phased by light/dark cycles in N–limited as well as N–replte conditions, and also to ammonium pulses in N–limited growth in continuous light. Both the degree and timing of the cell cycle phasing varied among species. When both stimuli were present, the influence of the photocycle overrode the N–pulse stimulus in H. carterae and A. carteri. while in T. weissflogii, division was always phased by the timing of the N–pulse regardless of the phase angle between the photocycle and the pulse.  相似文献   

16.
Two morphotypes of Emiliania huxleyi (Lohmann 1902) Hay et al. 1967, types A and B, known to be unequally distributed in the oceans, were grown in dilution cultures at a range of photon flux densities (PFDs) (1.5–155 μmol photons·m?2·s?1) and two temperatures (10° and 15° C). Calcite carbon and organic carbon content of the cells as well as instantaneous growth rate, cell size, chlorophyll fluorescence, and light-scatter properties clearly depended on growth conditions and differed considerably for the two morphotypes. The ratio between calcite carbon and organic carbon production showed an optimum of 0.65 in E. huxleyi type A cells at PFD = 17.5. The ratio increased slightly with a temperature increase from 10° to 15°C but remained < 1.0 at both temperatures in light-limited cells. In contrast, calcite carbon production exceeded organic carbon production (ratio: 1.4–2.2) in phosphate-deprived cultures. Emiliania huxleyi type B generally showed a higher calcite carbon/organic carbon ratio than E. huxleyi type A, but the relation with PFD was similar. The content of calcite carbon and organic carbon as well as the instantaneous growth rate, cell size, chlorophyll fluorescence, and light-scatter properties showed large diel variations that were closely related to the division cycle. Our results show the importance of mapping the structure of any sampled cell population with respect to the phase in the cell division cycle, as this largely determines the outcome of not only “per cell” measurements but also short time (less than 24 h) flux measurements. For instance, dark production of calcite by E. huxleyi was negatively affected by cell division. Slowly growing (phosphate-stressed) cultures produced calcite in the light and in the dark. In contrast, rapidly growing cultures at 10°C produced calcite only in the light, whereas in the dark there was a significant loss of calcite due to dissolution.  相似文献   

17.
The characteristics of phosphate uptake in synchronized populations of Euglena gracilis Klebs (Z) were studied. The cells were grown autotrophically in batch culture and synchronized with a cycle of 14:10 LD. Incorporation of P was nonlinear with time for the first 2 h of incubation over a wide range of P concentrations and completely inhibited by darkness. The kinetics of P uptake as a function of P concentration were triphasic between 0 and 100 μM PO4, obeying Michaelis-Menten kinetics over the 0–3 μM PO4 range-only. Uptake velocity increased linearly with, concentration above 3 μM PO4. The kinetics of P uptake varied with stage in the cell cycle. The half-saturation constant for uptake at the lower concentrations oscillated between 0.7 and 2.8 μM PO4, reaching a peak immediately before the onset of cell division (beginning of the dark period). Vmax was largest in the middle of the light period, as was the slope of the linear portion of the kinetic pattern. Further analysis of the kinetics suggests that changes in this slope are responsible for the oscillation in Ks values calculated for the lower concentrations. This analysis assumes 2 uptake mechanisms, one which saturates at low concentrations of phosphate, and one which is nonsaturable over the entire concentration range examined.  相似文献   

18.
The effect of a 12:12-h light:dark (LD) cycle on the phasing of several cell parameters was explored in a variety of marine picophytoplanktonic strains. These included the photosynthetic prokaryotes Prochlorococcus (strains MED 4, PCC 9511, and SS 120) and Synechococcus (strains ALMO 03, ROS 04, WH 7803, and WH 8103) and five picoeukaryotes (Bathycoccus prasinos Eikrem et Throndsen, Bolidomonas pacifica Guillou et Chrétiennot-Dinet, Micromonas pusilla Manton et Parke, Pelagomonas calceolata Andersen et Saunders, and Pycnococcus provasolii Guillard et al.). Flow cytometric analysis was used to determine the relationship between cell light scatter, pigment fluorescence, DNA (when possible), and the LD cycle in these organisms. As expected, growth and division were tightly coupled to the LD cycle for all of these strains. For both Prochlorococcus and picoeukaryotes, chl and intracellular carbon increased throughout the light period as estimated by chl fluorescence and light scatter, respectively. In response to cell division, these parameters decreased regularly during the early part of the dark period, a decrease that either continued throughout the dark period or stopped for the second half of the dark period. For Synechococcus, the decrease of chl and scatter occurred earlier (in the middle of the light period), and for some strains these cellular parameters remained constant throughout the dark period. The timing of division was very similar for all picoeukaryotes and occurred just before the subjective dusk, whereas it was more variable between the different Prochlorococcus and Synechococcus strains. The burst of division for Prochlorococcus SS 120 and PCC 9511 was recorded at the subjective dusk, whereas the MED 4 strain divided later at night. Synechococcus ALMO 03, ROS 04, and WH 7803, which have a low phycourobilin to phycoerythrobilin (PUB:PEB) ratio, divided earlier, and their division was restricted to the light period. In contrast, the high PUB:PEB Synechococcus strain WH 8103 divided preferentially at night. There was a weak linear relationship between the FALSmax:FALSmin ratio and growth rate calculated from cell counts (r = 0.83, n = 11, P < 0.05). Because of the significance of picoplanktonic populations in marine systems, these results should help to interpret diel variations in oceanic optical properties in regions where picoplankton dominates.  相似文献   

19.
Cell division in most eukaryotic algae grown on alternating periods of light and dark (LD) is synchronized or phased so that cell division occurs only during a restricted portion of the LD cycle. However, the phase angle of the cell division gate, the time of division relative to the beginning of the light period, is known to be affected by growth conditions such as nutrient status and temperature. In this study, it is shown that the phase angle of cell division in a diatom, Cylindrotheca fusiformis Reimann and Lewin, is affected by the N-limited growth rate; cell division occurred later in the dark period (12:12 h LD cycle) when the growth rate was infradian (D = 0.42 d?1) than when it was ultradian (D = 1.0 d?1). Nitrogen-pulses did not affect the phase angle of the division gate, but could shift the time of peak cell division activity within the division gate. The effects, if any, of N-pulses were dependent upon the growth rate and the time of day that the pulses were administered. These responses indicate that the timing of cell division in this diatom is not determined solely by the zeitgeber from the LD cycle, but rather that a LD cycle control mechanism and a N-mediated control mechanism are both involved and are somewhat interdependent. In addition, an increase in protein was observed immediately after administering a N-pulse to C. fusiformis in the ultradian growth mode indicating that the accumulation of protein can be uncoupled from the cell division cycle.  相似文献   

20.
Mesodinium rubrum (=Myrionecta rubra), a marine ciliate, acquires plastids, mitochondria, and nuclei from cryptophyte algae. Using a strain of M. rubrum isolated from McMurdo Sound, Antarctica, we investigated the photoacclimation potential of this trophically unique organism at a range of low irradiance levels. The compensation growth irradiance for M. rubrum was 0.5 μmol quanta · m−2 · s−1, and growth rate saturated at ∼20 μmol quanta · m−2 · s−1. The strain displayed trends in photosynthetic efficiency and pigment content characteristic of marine phototrophs. Maximum chl a–specific photosynthetic rates were an order of magnitude slower than temperate strains, while growth rates were half as large, suggesting that a thermal limit to enzyme kinetics produces a fundamental limit to cell function. M. rubrum acclimates to light‐ and temperature‐limited polar conditions and closely regulates photosynthesis in its cryptophyte organelles. By acquiring and maintaining physiologically viable, plastic plastids, M. rubrum establishes a selective advantage over purely heterotrophic ciliates but reduces competition with other phototrophs by exploiting a very low‐light niche.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号