首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. In the culture forms of the elasmobranch trypanosome Trypanosoma raiae is found a prominent cytopharyngeal complex. This consists of a group of 5 or 6 microtubules associated with a deep invagination of the cell membrane which arises from a cytostome near the opening of the flagellar pocket. This structure is a constant feature of the various epimastigote and trypomastigote forms that this flagellate has in culture. Replication of the cytopharyngeal apparatus is completed before cytokinesis.
Experiments using ferritin as an electron dense tracer show that endocytosis occurs from the blind ending of the cytopharynx both in the exponential and stationary phases of growth in vitro. Ferritin is transported from the cytopharynx by endocytotic vesicles to large, membrane-bound vacuoles in the posterior region of the cell. Ultrastructural location of non-specific acid phosphatase within these digestive vacuoles and also within the Golgi apparatus is reported.
Coated vesicles found in association with the flagellar pocket are another route of uptake of ferritin by T. raiae.  相似文献   

2.
Actin is expressed at similar levels but in different locations in bloodstream and procyclic forms of Trypanosoma brucei. In bloodstream forms actin colocalizes with the highly polarized endocytic pathway, whereas in procyclic forms it is distributed throughout the cell. RNA interference demonstrated that in bloodstream forms, actin is an essential protein. Depletion of actin resulted in a rapid arrest of cell division, termination of vesicular traffic from the flagellar pocket membrane leading to gross enlargement of the pocket, loss of endocytic activity and eventually cell death. These results indicate that actin is required for the formation of coated vesicles from the flagellar pocket membrane, which is the first step in the endocytic pathway. Although loss of actin in procyclic cells did not affect growth, the trans region of the Golgi became distorted and enlarged and appeared to give rise to a heterogeneous population of vesicles. However, the flagellar pocket was not affected. These findings suggest that trypanosomes have different functional requirements for actin during the bloodstream and procyclic phases of the life cycle.  相似文献   

3.
Epimastigotes and trypomastigotes of Trypanosoma cruzi, obtained from liquid cultures, have vesicles and multivesicular structures in their cytoplasm. Horseradish peroxidase (HRP) was used as a tracer to study the uptake of protein by these two forms. In epimastogotes HRP is ingested by a process of pinocytosis which occurs through the cytostome. Trypomastigotes do not have a cytostome, and pinocytosis occurs through the flagellar pocket region. The pinocytotic vesicles can fuse with each other to form large multivesicular structures that are more abundant in epimastigotes than in trypomastigotes. The cell membrane as well as the membranes of the pinocytotic vesicles and the large multivesicular structure have carbohydrates, as detected by the periodic acid-thiosemicarbazide-silver proteinate technique. Intramembranous particles were observed by using the freeze-fracture technique. The cell membrane has many particles, whereas the membranes of the vesicles and multivesicular structure have few or no particles.  相似文献   

4.
Acid phosphatase and cathepsin D activity is greater in stumpy than in slender forms, especially when estimations are made on a ‘light lysosomal’ fraction. Acid phosphatase is localized in the region of the flagellar pocket in slender forms but is present in lysosomes, phagolysosomes, autophagosomes and rough endoplasmic reticulum of stumpy forms. In stumpy forms dense bodies develop the macrocrystalline structure of peroxisomes. Intense enzyme activity in stumpy forms appears to be associated with absorption of lipid from the plasma by a mechanism similar to but of greater intensity than that described in atheromatous rabbit aorta.  相似文献   

5.
Summary Two days cultures of HeLa cells were stimulated for a short time with ATP and incubated in a solution of ferritin. The localization of the marker was studied after 15 min. The ferritin particles were encountered in smooth surfaced vacuoles, in the Golgi cisternae and vesicles, in dense bodies, multivesicular bodies and crystal-containing bodies. Ferritin was never observed in the nucleus, for this time of incubation. These observations are discussed in comparison with results obtained after an incubation in 3H-DNA.  相似文献   

6.
SYNOPSIS. The fine structure of 2 isolates of Trypanosoma congolense maintained in laboratory rodents has been studied from thin sections of osmium- and aldehyde-fixed flagellates. The pellicular complex, nucleus, and flagellar apparatus are all similar to those of other African trypanosomes. Aberrant intracellular differentiation of the flagellum is occasionally found. As in bloodstream forms of other salivarian trypanosomes the single mitochondrion forms an irregular canal running from one end of the body to the other, with a shallow bowl-shaped expansion forming a capsule for the fibrous kinetoplast (mitochondrial DNA). A connexion between the mitochondrial envelope of the kinetoplast and the basal body of the flagellum is not evident, and sometimes the flagellum base is not even apposed to the kinetoplast but lies behind it. Tubular cristae are present in the mitochondrial canal and, by light microscopy, this structure gives a positive reaction for NAD diaphorase suggesting at least some activity in electron transport, even tho at this stage in its life cycle respiration is doubtfully sensitive to cyanide and cytochrome pigments are in all probability absent. The region of the cytoplasm between the nucleus and the flagellar pocket has all the trappings associated with secretory cells in higher animals, or with the secretion of surface structures in phytoflagellates. just behind the nucleus a limb of granular reticulum subtends a Colgi stack of flattened saccules with attendant vesicles. Close to the distal pole of the Golgi complex is a network of smooth-membraned cisternae, termed here the agranular or secretory reticulum, which undergoes localized swelling with the accumulation of a secretory product to form large spherical sacs or vacuoles. These network-linked vacuoles probably correspond to the post nuclear vacuole complex visible by light microscopy. From its apparent secretory function this complex is regarded here as being possibly an extension or derivative of the Golgi complex, the smooth-membraned tubules lying alongside the 2 structures possibly representing a link between them. By analogy with phytoflagellates and the secretory cells of higher animals, it is suggested that the secretion is transported for discharge into the flagellar pocket by way of multivesicular bodies and smooth-walled tubules or vesicles. Spiny pits in the wall of the flagellar pocket, and similar-sized vesicles in the nearby cytoplasm, could be stages in either exocytosis of secretion or endocytosis (pinocytosis). It is tentatively suggested that the secretion may be the material from which the surface coat is formed. Neither a cytostome nor a contractile vacuole has been observed in T. congolense.  相似文献   

7.
CB1-glycoprotein is a component of flagellar pocket, endosome, and lysosome membranes of long, slender bloodstream forms of the Trypanosoma brucei subgroup of African trypanosomes. We have used immunoblotting, immunofluorescence, and cryoimmunoelectron microscopy to study CB1-glycoprotein expression as long, slender bloodstream forms of pleomorphic T. b. brucei and T. b. gambiense transform through intermediate stages into short, stumpy forms. Intermediate and stumpy forms express more CB1-glycoprotein than long, slender forms. These results, coupled with previous work showing that procyclic forms do not express CB1-glycoprotein, show that the expression of lysosomal membrane glycoproteins is regulated coordinately with other aspects of lysosome and endosome function as these trypanosomes go through their life cycle.  相似文献   

8.
Segregation of Ferritin in Glomerular Protein Absorption Droplets   总被引:25,自引:15,他引:10       下载免费PDF全文
Ferritin was used as a tracer to study the mechanism by which proteins are segregated into droplets by the visceral epithelium of glomerular capillaries. In glomeruli from both normal and aminonucleoside-nephrotic rats ferritin molecules introduced into the general circulation penetrated the endothelial openings and were seen at various levels in the basement membrane. Striking differences between nephrotic and controls were seen only in the amount of ferritin incorporated into the epithelium. In normal animals, a few ferritin molecules were seen in small invaginations of the cell membrane limiting the foot processes, within minute vesicles in the epithelium, or within occasional large vacuoles and dense bodies. In nephrotics, epithelial pinocytosis was marked, and numerous ferritin molecules were seen within membrane invaginations and in small cytoplasmic vesicles at all time points. After longer intervals, the concentration of ferritin increased in vacuoles and particularly within the dense bodies or within structures with a morphology intermediate between that of vacuoles and dense bodies. In nephrotic animals cleft-like cavities or sinuses were frequently encountered along the epithelial cell surface facing the urinary spaces. Some of these sinuses contained material resembling that filling the dense bodies except that it appeared less compact. The findings suggest that ferritin molecules—and presumably other proteins which penetrate the basement membrane—are picked up by the epithelium in pinocytotic vesicles and transported via the small vesicles to larger vacuoles which are subsequently transformed into dense bodies by progressive condensation. The content of the dense bodies may then undergo partial digestion and be extruded into the urinary spaces where it disperses. The activity of the glomerular epithelium in the incorporation and segregation of protein is similar in normal and nephrotic animals, except that the rate is considerably higher in nephrosis where the permeability of the glomerular basement membrane is greatly increased.  相似文献   

9.
We have studied the transport of ferritin that was internalized by coated micropinocytic vesicles at the apical surface of the choroid plexus epithelium in situ. After ventriculocisternal perfusion of native ferritin (NF) or cationized ferritin (CF), three routes followed by the tracers are revealed: (a) to lysosomes, (b) to cisternal compartments, and (c) to the basolateral cell surface. (a) NF is micropinocytosed to a very limited degree and appears in a few lysosomal elements whereas CF is taken up in large amounts and can be followed, via endocytic vacuoles and light multivesicular bodies, to dark multivesicular bodies and dense bodies. (b) Occasionally, CF particles are found in cisterns that may represent GERL or trans-Golgi elements, whereas stacked Golgi cisterns never contain CF. (c) Transepithelial vesicular transport of CF is distinctly revealed. The intercellular spaces of the epithelium, below the apical tight junctions, contain numerous clusters of CF particles, often associated with surface-connected, coated vesicles. Vesicles in the process of exocytosis of CF are also present at the basal epithelial surface, whereas connective tissue elements below the epithelium are unlabeled. Our conclusion is that fluid and solutes removed from the cerebrospinal fluid by endocytosis either become sequestered in the lysosomal apparatus of the choroidal epithelium or are transported to the basolateral surface. However, our results do not indicate any significant recycling via Golgi complexes of internalized apical cell membrane.  相似文献   

10.
Encephalitozoon cuniculi grow within ever-increasing parasitophorous vacuoles (PV) in peritoneal macrophages. The PV boundary membrane conforms to a rich arrangement of blebs; similar, but free vesicles were observed within the PV space. An iron dextran-concanavalin A marker was used to express visually clustered distributions of Con A receptors on the PV boundary blebs and free vesicles; no marker was observed on other membrane surfaces within the PV. These results, combined with the observation that the PV grows while the host cytoplasm decreases in mass, implicate the PV boundary blebs of interiorizing into vesicles by a pinocytic mechanism. Phagocytic vacuoles, secondary lysosomes and pinocytic vesicles were labeled by incubating infected macrophages in minimum essential medium with ferritin. Ferritin readily accumulated in secondary lysosomes and phagocytic vacuoles; however, ferritin was excluded from parasitophorous vacuoles containing E. cuniculi. Acid phosphatase cytochemical reaction product was observed in lysosomes and phagocytic vacuoles; however, parasitophorous vacuoles with vegetative E. cuniculi were always negative.  相似文献   

11.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

12.
Distribution of acid phosphatase as a marker enzyme for lysosomes was investigated in the isoprenalin stimulated rat parotid gland. The enzyme was localized in lipofuscin-like bodies as well as in non-discharged granules. The appearance of these bodies was correlated in time to the appearance of smooth vesicles and reduction of the acinar lumen. Ferritin, used as a tracer and introduced into the stimulated gland via cannulated parotid ducts, was found in smooth vesicles, vacuoles and lipofuscin-like bodies throughout the cytoplasm of the acinar cells. Very often ferritin-containing vesicles were found in the vicinity of the Golgi complex. In most cases the vesicles containing ferritin also showed acid phosphatase reaction product. A possible correlation between the lysosomal system and the process of recycling and degradation of membranes in the stimulated gland is discussed.  相似文献   

13.
Recently, proteins linked to glycosylphosphatidylinositol (GPI) residues have received considerable attention both for their association with lipid microdomains and for their specific transport between cellular membranes. Basic features of trafficking of GPI-anchored proteins or glycolipids may be explored in flagellated protozoan parasites, which offer the advantage that their surface is dominated by these components. In Trypanosoma brucei, the GPI-anchored variant surface glycoprotein (VSG) is efficiently sorted at multiple intracellular levels, leading to a 50-fold higher membrane concentration at the cell surface compared with the endoplasmic reticulum. We have studied the membrane and VSG flow at an invagination of the plasma membrane, the flagellar pocket, the sole region for endo- and exocytosis in this organism. VSG enters trypanosomes in large clathrin-coated vesicles (135 nm in diameter), which deliver their cargo to endosomes. In the lumen of cisternal endosomes, VSG is concentrated by default, because a distinct class of small clathrin-coated vesicles (50-60 nm in diameter) budding from the cisternae is depleted in VSG. TbRAB11-positive cisternal endosomes, containing VSG, fragment by an unknown process giving rise to intensely TbRAB11- as well as VSG-positive, disk-like carriers (154 nm in diameter, 34 nm in thickness), which are shown to fuse with the flagellar pocket membrane, thereby recycling VSG back to the cell surface.  相似文献   

14.
Ultrastructural study of the midgut of Calanoid Copepods revealed the presence of several cell types in all species. In a previous report we described and assigned a function to each of these cell types. In order to affirm the validity of those assignments we undertook an investigation of enzymatic activity especially of phosphatase and arylsulphatase. By cytochemical methods, alkaline phosphatase activity was detected in R-, R'-D- and B-cells, with labelling being observed on the apical plasmic membrane level in all four, and in B-cells on the pinocytotic vesicle membranes. Acid phosphatase and aryl-sulphatase activities were only detectable in B-cells; the most frequently labelled structures were located in the vacuolar system, dictyosomes and Golgi vesicles, although Golgi structures occasionally reacted to acid phosphatase. Nome of the dense bodies observed in B-cells reacted to arylsulphatase. Similarly they were unevenly labelled during acid phosphatase tests. Hence it may be assumed that dense bodies are not involved in hydrolases. It is possible that these enzymes originated from vesicles generated by the Golgi saccules surrounding and joined to the vacuoles, thus bypassing the lysosome I stage.  相似文献   

15.
Summary ACPase and TPPase activity has been examined in the germinal epithelium of the testes in the domestic fowl. ACPase activity in spermatogonia and spermatocytes was confined to the Golgi complex. In spermatids ACPase activity was seen in the endoplasmic reticulum and nuclear envelope in the phase I and especially in the phase II (the elongating phase). This activity gradually decreased during the next phase III, and had disappeared in the final phase IV. The membrane body showed ACPase reaction in the small peripheral vacuoles and cisternal structures surrounding large central vacuoles. ACPase was also present in vesicles surrounding the developing tail. Late spermatids showed an abundance of autophagic vacuoles which had a complex array of ACPase positive delimiting membranes. In Sertoli cells ACPase activity was predominant in the lysosomes. TPPase activity was seen in the cisternae of the Golgi complex in spermatogonia and spermatocytes. In spermatids activity was present in the endoplasmic reticulum during the phase II, but it is lost in later stages. The smaller vacuoles and cisternal structures in the membrane body also showed reaction products. According to the present results it is thought likely that the smaller vacuoles and cisternal structures of the membrane body are of endoplasmic reticulum origin. The autophagic vacuoles in spermatids and the lysosomes of Sertoli cells are considered responsible for the degradation of residual bodies cast off by spermatids.  相似文献   

16.
本实验用酶细胞化学和示踪细胞化学方法观察了睾丸间质细胞中多泡体的形成过程及其与溶酶体的关系。实验结果表明,睾丸间质细胞中多泡体的形成可分三个阶段:首先,一些含内吞物质的泡状结构进入高尔基体区域,与那里的小泡融合,形成内含少量小泡的前多泡体;然后,前多泡体互相融合,形成体积较大、基质电子密度低、内含小泡排列稀疏的低电子密度多泡体;最后,低电子密度多泡体通过表面长出微绒毛样结构并不断断裂的方式去除多余的界膜,形成体积较小、基质电子密度高、内含小泡排列紧密的高电子密度多泡体。因此,多泡体的形成既与内吞活动有关,又与高尔基体区域小泡有关。前多泡体和低电子密度多泡体不含溶酶体酶。在多泡体形成过程中,只有到高电子密度多泡体阶段,才与溶酶体发生关系,从溶酶体中获取溶酶体酶。多泡体形成后,常与自体吞噬泡靠近,可能参与睾丸间质细胞的自体吞噬活动。  相似文献   

17.
多泡体形成过程的细胞化学研究   总被引:1,自引:0,他引:1  
Multivesicular bodies were observed frequently in electron microscope photographs of Leydig cells from normal adult rat testes. Their formation, evolution and fate were analyzed morphologically in preparations treated to show cytidine monophosphatase (CMPase) activity and in animals sacrificed at various time intervals ranging from 5 min to 2 hrs after a single intratesticular injection of cationic ferritin (CF). Analysis of morphological and cytochemical data led to the following interpretation for the origin and fate of the multivesicular bodies in Leydig cells. The formation of multivesicular bodies in Leydig cells can be divided into three steps. Step 1, some endocytic vacuoles in Golgi region fuse with small vesicles to form pre-multivesicular bodies. Step 2, the pre-multivesicular bodies fuse together to form pale multivesicular bodies which are characterized by their large size, pale matrix and paucity of internal vesicles. Step 3, the pale multivesicular bodies remove their surplus enveloping membrane to become dense multivesicular bodies which are characterized by their smaller size, dense matrix and filling with internal vesicles. The pre-multivesicular bodies and pale multivesicular bodies do not contain hydrolytic enzymes, the dense multivesicular bodies acquire their hydrolytic enzymes by fusion with lysosomes and show CMPase activity. The dense multivesicular bodies often show a very close association with autophagosomes, and they might be involved in the autophagic activity of Leydig cells.  相似文献   

18.
19.
Concanavalin A (Con A) stimulates the production in starfish follicle cells of 1-methyladenine, a hormone which induces oocyte maturation. We have therefore investigated Con A-induced morphological changes and Con A-binding sites in the follicle cell using native Con A and horseradish peroxidase- or ferritin-labeled Con A (HRP-Con A, Fer-Con A). After isolated follicle cells were incubated with Con A (1 mg/ml), vacuoles, the Golgi complex and multivesicular body-like organelles (MVBs) became prominent in most of the cells. After follicle cells were prefixed and then incubated with Fer-Con A for 60 min, tagged ferritin was diffusely and randomly distributed as single or small clustered particles on the cell surface. The incubation of isolated follicle cells with Fer-Con A for 10 min before fixation resulted in numerous ferritin particles localized along the internalized membrane, and also in vacuoles, MVBs and small lysosome-like structures. After 60 min incubation with Fer-Con A, ferritin was further located in large lysosome-like structures and in vesicles near and in the Golgi area as well as in the organelles described above. HRP-Con A binding sites were also observed in vacuoles and MVBs of the intact cells.
These results suggest that Con A binds at first to the cell surface and causes rapid internalization and that membrane-bound Con A is easily endocytosed into vacuoles, MVBs and lysosome-like structures, and is later incorporated in some vesicles in the Golgi area.  相似文献   

20.
Ovarian granulosa cells (GC) were exposed to cationic ferritin (CF) in an effort to determine the binding, intracellular fate of endocytosed negatively charged plasma membrane. Following labeling at zero degrees or after pre-fixation, CF accumulated in patches over the cell surface. Exposure to methylamine (MA) resulted in an even distribution of CF over the GC surface. Endocytosis occurred in non-clathrin coated regions of the GC surface and CF was subsequently observed in a variety of smooth surfaced vesicles. Following a 60 min exposure to CF many of the CF containing vesicles appeared to fuse with each other forming larger vesicles. Numerous examples of small CF containing vesicles surrounding large CF containing vesicles were observed. Also observed at 60 min were CF containing multivcsicular and vesicular bodies. Tubular evaginations of the large vesicular structures were often observed; some containing CF. Acid phosphatase activity was observed in multivesicular bodies and the large CF filled vesicles. CF-containing vesicles were also observed in the Golgi region, but CF was never observed in the saccules of this organelle. Our study suggests that endocytosed CF does not pass through the Golgi complex. Many of the internalized vesicles become associated with the lysosomal system. Since GC's secrete progesterone in culture, these observations may indicate that membrane recycling in steroid secreting cells differs from protein secreting cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号