首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants synthesize S-methylmethionine (SMM) from S-adenosylmethionine (AdoMet), and methionine (Met) by a unique reaction and, like other organisms, use SMM as a methyl donor for Met synthesis from homocysteine (Hcy). These reactions comprise the SMM cycle. Two Arabidopsis cDNAs specifying enzymes that mediate the SMM --> Met reaction (SMM:Hcy S-methyltransferase, HMT) were identified by homology and authenticated by complementing an Escherichia coli yagD mutant and by detecting HMT activity in complemented cells. Gel blot analyses indicate that these enzymes, AtHMT-1 and -2, are encoded by single copy genes. The deduced polypeptides are similar in size (36 kDa), share a zinc-binding motif, lack obvious targeting sequences, and are 55% identical to each other. The recombinant enzymes exist as monomers. AtHMT-1 and -2 both utilize l-SMM or (S,S)-AdoMet as a methyl donor in vitro and have higher affinities for SMM. Both enzymes also use either methyl donor in vivo because both restore the ability to utilize AdoMet or SMM to a yeast HMT mutant. However, AtHMT-1 is strongly inhibited by Met, whereas AtHMT-2 is not, a difference that could be crucial to the control of flux through the HMT reaction and the SMM cycle. Plant HMT is known to transfer the pro-R methyl group of SMM. This enabled us to use recombinant AtHMT-1 to establish that the other enzyme of the SMM cycle, AdoMet:Met S-methyltransferase, introduces the pro-S methyl group. These opposing stereoselectivities suggest a way to measure in vivo flux through the SMM cycle.  相似文献   

2.
Tan Q  Zhang L  Grant J  Cooper P  Tegeder M 《Plant physiology》2010,154(4):1886-1896
Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.  相似文献   

3.
Methionine (Met) S-methyltransferase (MMT) catalyzes the synthesis of S-methyl-Met (SMM) from Met and S-adenosyl-Met (Ado-Met). SMM can be reconverted to Met by donating a methyl group to homocysteine (homo-Cys), and concurrent operation of this reaction and that mediated by MMT sets up the SMM cycle. SMM has been hypothesized to be essential as a methyl donor or as a transport form of sulfur, and the SMM cycle has been hypothesized to guard against depletion of the free Met pool by excess Ado-Met synthesis or to regulate Ado-Met level and hence the Ado-Met to S-adenosylhomo-Cys ratio (the methylation ratio). To test these hypotheses, we isolated insertional mmt mutants of Arabidopsis and maize (Zea mays). Both mutants lacked the capacity to produce SMM and thus had no SMM cycle. They nevertheless grew and reproduced normally, and the seeds of the Arabidopsis mutant had normal sulfur contents. These findings rule out an indispensable role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher Ado-Met and lower S-adenosylhomo-Cys levels than the wild type and consequently had a higher methylation ratio (13.8 versus 9.5). Free Met and thiol pools were unaltered in this mutant, although there were moderate decreases (of 30%-60%) in free serine, threonine, proline, and other amino acids. These data indicate that the SMM cycle contributes to regulation of Ado-Met levels rather than preventing depletion of free Met.  相似文献   

4.
5.
6.
Angiosperms synthesize S-methylmethionine (SMM) from methionine (Met) and S-adenosylmethionine (AdoMet) in a unique reaction catalyzed by Met S-methyltransferase (MMT). SMM serves as methyl donor for Met synthesis from homocysteine, catalyzed by homocysteine S-methyltransferase (HMT). MMT and HMT together have been proposed to constitute a futile SMM cycle that stops the free Met pool from being depleted by an overshoot in AdoMet synthesis. Arabidopsis and maize have one MMT gene, and at least three HMT genes that belong to two anciently diverged classes and encode enzymes with distinct properties and expression patterns. SMM, and presumably its cycle, must therefore have originated before dicot and monocot lineages separated. Arabidopsis leaves, roots and developing seeds all express MMT and HMTs, and can metabolize [35S]Met to [35S]SMM and vice versa. The SMM cycle therefore operates throughout the plant. This appears to be a general feature of angiosperms, as digital gene expression profiles show that MMT and HMT are co-expressed in leaves, roots and reproductive tissues of maize and other species. An in silico model of the SMM cycle in mature Arabidopsis leaves was developed from radiotracer kinetic measurements and pool size data. This model indicates that the SMM cycle consumes half the AdoMet produced, and suggests that the cycle serves to stop accumulation of AdoMet, rather than to prevent depletion of free Met. Because plants lack the negative feedback loops that regulate AdoMet pool size in other eukaryotes, the SMM cycle may be the main mechanism whereby plants achieve short-term control of AdoMet level.  相似文献   

7.
An unknown signal at 2.93 ppm in 1H-NMR spectra of rice, Oryza sativa, was assigned to the methyl groups of sulphur-methylmethionine (SMM), thereby devising a new method for the determination of this compound. Rice seedlings growing aerobically in the dark and in the light engaged for the synthesis of SMM an amount of Met corresponding to 23 and 8%, respectively, of the total seed reserves of this amino acid. In etiolated shoots, SMM reached 1.2 micromol g(-1) fresh weight, an unusually high level in vegetative tissues of wild-type plants. This is compared to a value of 0.4 micromol g(-1) fresh weight in green tissues. A decreased demand for Met during growth caused the higher accumulation of SMM in etiolated, rather than green, tissues. At the same time, dark seedlings were endowed with a readily utilizable and translocable alternative form of Met, as shown by retrieval of SMM from the coleoptile. The importance of methyl group storage in SMM is shown by comparison with choline and choline phosphate pools.  相似文献   

8.
It has been shown that marine algae produce the compatible solute dimethylsulfoniopropionate (DMSP) from methionine (Met) via four enzymatic reactions in which the third step, synthesis of 4‐dimethylsulfonio‐2‐hydroxy‐butyrate (DMSHB) from 4‐methylthio‐2‐hydroxybutyrate (MTHB), is the committing step. However, regulation of the biosynthetic pathways and transport properties of DMSP is largely unknown. Here, the effects of sulfur and sodium concentrations on the uptake and synthesis of DMSHB and DMSP were examined in a sterile mutant of Ulva pertusa Kjellm. Sulfur deficiency increased the activity of the sulfur assimilation enzyme O‐acetyl serine sulfhydrylase but decreased the MTHB S‐methyltransferase activity, suggesting the preferential utilization of sulfur atoms for Met metabolites other than DMSP. Uptake of DMSP and DMSHB was enhanced by S deficiency. High salinity enhanced the MTHB S‐methyltransferase activity as well as the uptake of DMSHB. The MTHB S‐methyltransferase activity was inhibited by its product DMSP. These data demonstrate the importance of MTHB S‐methyltransferase activity and uptake of DMSHB for the regulation of DMSP.  相似文献   

9.
Tabe LM  Droux M 《Plant physiology》2001,126(1):176-187
It is currently assumed that the assimilation of sulfur into reduced forms occurs predominantly in the leaves of plants. However, developing seeds have a strong requirement for sulfur amino acids for storage protein synthesis. We have assessed the capacity of developing seeds of narrow-leaf lupin (Lupinus angustifolius) for sulfur assimilation. Cotyledons of developing lupin seeds were able to transfer the sulfur atom from 35S-labeled sulfate into seed proteins in vitro, demonstrating the ability of the developing cotyledons to perform all the steps of sulfur reduction and sulfur amino acid biosynthesis. Oxidized sulfur constituted approximately 30% of the sulfur in mature seeds of lupins grown in the field and almost all of the sulfur detected in phloem exuded from developing pods. The activities of three enzymes of the sulfur amino acid biosynthetic pathway were found in developing cotyledons in quantities theoretically sufficient to account for all of the sulfur amino acids that accumulate in the protein of mature lupin seeds. We conclude that sulfur assimilation by developing cotyledons is likely to be an important source of sulfur amino acids for the synthesis of storage proteins during lupin seed maturation.  相似文献   

10.
Dimethylsulfoniopropionate (DMSP) plays important roles in oceanic carbon and sulfur cycling and may significantly impact climate. It is a biomolecule synthesized from the methionine (Met) pathway and proposed to serve various physiological functions to aid in environmental stress adaptation through its compatible solute, cryoprotectant, and antioxidant properties. Yet, the enzymes and mechanisms regulating DMSP production are poorly understood. This study utilized a proteomics approach to investigate protein changes associated with salinity-induced DMSP increases in the model sea-ice diatom Fragilariopsis cylindrus (CCMP 1102). We hypothesized proteins associated with the Met-DMSP biosynthesis pathway would increase in relative abundance when challenged with elevated salinity. To test this hypothesis axenic log-phase cultures initially grown at a salinity of 35 were gradually shifted to a final salinity of 70 over a 24-h period. Intracellular DMSP was measured and two-dimensional gel electrophoresis was used to identify protein changes at 48 h after the shift. Intracellular DMSP increased by approximately 85% in the hypersaline cultures. One-third of the proteins increased under high salinity were associated with amino acid pathways. Three protein isoforms of S-adenosylhomo-cysteine hydrolase, which synthesizes a Met precursor, increased 1.8- to 2.1-fold, two isoforms of S-adenosyl Met synthetase increased 1.9- to 2.5-fold, and S-adenosyl Met methyltransferase increased by 2.8-fold, suggesting active methyl cycle proteins are recruited in the synthesis of DMSP. Proteins from the four enzyme classes of the proposed algal Met transaminase DMSP pathway were among the elevated proteins, supporting our hypothesis and providing candidate genes for future characterization studies.  相似文献   

11.
Tabe LM  Droux M 《Plant physiology》2002,128(3):1137-1148
The low sulfur amino acid content of legume seeds restricts their nutritive value for animals. We have investigated the limitations to the accumulation of sulfur amino acids in the storage proteins of narrow leaf lupin (Lupinus angustifolius) seeds. Variation in sulfur supply to lupin plants affected the sulfur amino acid accumulation in the mature seed. However, when sulfur was in abundant supply, it accumulated to a large extent in oxidized form, rather than reduced form, in the seeds. At all but severely limiting sulfur supply, addition of a transgenic (Tg) sink for organic sulfur resulted in an increase in seed sulfur amino acid content. We hypothesize that demand, or sink strength for organic sulfur, which is itself responsive to environmental sulfur supply, was the first limit to the methionine (Met) and cysteine (Cys) content of wild-type lupin seed protein under most growing conditions. In Tg, soil-grown seeds expressing a foreign Met- and Cys-rich protein, decreased pools of free Met, free Cys, and glutathione indicated that the rate of synthesis of sulfur amino acids in the cotyledon had become limiting. Homeostatic mechanisms similar to those mediating the responses of plants to environmental sulfur stress resulted in an adjustment of endogenous protein composition in Tg seeds, even when grown at adequate sulfur supply. Uptake of sulfur by lupin cotyledons, as indicated by total seed sulfur at maturity, responded positively to increased sulfur supply, but not to increased demand in the Tg seeds.  相似文献   

12.
How nutritionally imbalanced is phloem sap for aphids?   总被引:8,自引:0,他引:8  
Aphids harbour intracellular symbionts (Buchnera) that provide their host with amino acids present in low amounts in their diet, phloem sap. To find out the extent to which aphids depend on their symbionts for synthesis of individual essential amino acids, we have evaluated how well phloem sap amino acid composition matches the aphids' needs. Amino acid compositions of the ingested phloem sap were compared to amino acids in aphid body proteins and also to available information about optimal diet composition for other plant feeding insects. Phloem sap data from severed stylets of two aphid species, Rhopalosiphum padi (L.) (Homoptera: Aphididae) feeding on wheat, and Uroleucon sonchi (L.) (Homoptera: Aphididae) feeding on Sonchus oleraceus (L.), together with published information on phloem sap compositions from other plant species were used.Phloem sap has in general only around 20% essential amino acids, with a range from 15–48%. Aphid body proteins and optimal diets for two other plant feeding insects have around 50%. The phloem sap of early flowering S. oleraceus ingested by U. sonchi contained 48%, which seems to be exceptional. Aphids feeding on different plants appear to be very differently dependent on their symbionts for their overall essential amino acid synthesis, due to the large variation in proportion of essential amino acids in phloem sap from different plants.The profile of the essential amino acids in phloem sap from different plant species corresponds rather well to profiles of both aphid body proteins and optimal diets determined for plant feeding insects. However, methionine and leucine in phloem sap are in general low in these comparisons, suggesting a higher dependence on the symbiont for synthesis of these amino acids. Concentrations of several essential amino acids in phloem from different plant species seem to vary together, suggesting that levels of symbiont provisioning of different amino acids are adjusted in parallel.  相似文献   

13.
To investigate the role of cystathionine gamma-synthase (CGS) in the regulation of methionine synthesis Arabidopsis plants were transformed with a full-length antisense CGS cDNA and transformants analysed. Plants that were heterozygous for the transgene showed a 20-fold reduction of CGS activity that was accompanied by severe growth retardation and morphological abnormalities, from germination to flowering. Application of exogenous methionine to the transgenic lines restored normal growth. Surprisingly, transformed Arabidopsis plants exhibited a modest decrease in methionine content (35% reduction of the wild-type level) but a seven-fold decrease in the soluble pool of S-methylmethionine (SMM), a compound that plays a major role in storage and transport of reduced sulphur and labile methyl moieties. Several mechanisms can account for the maintenance of the soluble pool of methionine. First, the observed 20-fold increase in O-phosphohomoserine, a substrate of CGS, could compensate for the depressed level of CGS polypeptide by increasing the net rate of catalysis supported by the remaining enzyme. Second, the transgenic plants exhibited a two-fold increased level of cystathionine beta-lyase, the second enzyme in the methionine biosynthetic pathway. This indicates that enzymes other than CGS are subjected to a regulatory control by methionine or one of its metabolites. In addition to these mechanisms affecting de novo methionine synthesis, the recruitment of SMM to produce methionine may account for the small change of methionine levels in transgenic lines.  相似文献   

14.
Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.  相似文献   

15.
S-methyl-l-methionine (SMM) is ubiquitous in the tissues of flowering plants, but its precise function remains unknown. It is both a substrate and an inhibitor of the pyridoxal 5-phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase, due to its structural similarity to the natural substrate of this enzyme, S-adenosyl-l-methionine. In the reaction with ACC synthase, SMM can either be transaminated to yield 4-dimethylsulfonium-2-oxobutyrate; converted to α-ketobutyrate, ammonia, and dimethylsulfide; or inactivate the enzyme covalently after elimination of dimethylsulfide. These results suggest a previously unrecognized role for SMM in the regulation of ACC synthase activity in plants.  相似文献   

16.
The possible regulation of amino acid remobilization via the phloem in wheat (Triticum aestivum L.) by the primary enzyme in nitrogen (N) assimilation and re-assimilation, glutamine synthetase (GS, E.C. 6.3.1.2) was studied using two conditions known to alter N phloem transport, N deficiency and cytokinins. The plants were grown for 15 days in controlled conditions with optimum N supply and then N was depleted from and/or 6-benzylaminopurine was added to the nutrient solution. Both treatments generated an induction of GS1, monitored at the level of gene expression, protein accumulation and enzyme activity, and a decrease in the exudation of amino acids to the phloem, obtained with EDTA technique, which correlated negatively. GS inhibition by metionine sulfoximide (MSX) produced an increase of amino acids exudation and the inhibitor successfully reversed the effect of N deficiency and cytokinin addition over phloem exudation. Our results point to an important physiological role for GS1 in the modulation of amino acids export levels in wheat plants.  相似文献   

17.
Physiological evidence indicates that flower formation is hormonally controlled. The floral stimulus, or florigen, is formed in the leaves as a response to an inductive photoperiod and translocated through the phloem to the apical meristem. However, because of difficulties in obtaining and analyzing phloem sap and the lack of a bioassay, the chemical nature of this stimulus is one of the major unsolved problems in plant biology. A combination of microbore high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was used to compare the contents of the phloem sap from flowering and non-flowering plants. Instead of using one- or two-dimensional gel electrophoresis, microbore HPLC separations allowed us to detect proteins/peptides that were very small and present at very low levels. We detected more than 100 components in the phloem sap of Perilla ocymoides L. and Lupinus albusL. Sequences for 16 peptides in a mass range from 1 to 9 kDa were obtained. Two of these could be identified, 11 showed similarity to known or deduced protein sequences, and three showed no similarity to any known protein or translated gene sequence. Four of these peptides were specific to, modified, or increased in plants that were flowering, indicating their possible role in flower induction. The sequences of these peptides showed similarities to two purine permeases, a protein with similarity to protein kinases, and a protein with no similarities to any known protein.  相似文献   

18.
19.
The methionine (Met) cycle contributes to sulfur metabolism through the conversion of methylthioadenosine (MTA) to Met at the expense of ATP. MTA is released as a by-product of ethylene synthesis from S-adenosylmethionine (AdoMet). Disruption of the Met cycle in the Arabidopsis mtk mutant resulted in an imbalance of AdoMet homeostasis at sulfur-limiting conditions, irrespective of the sulfur source supplied to the plants. At a low concentration of 100 mum sulfate, the mtk mutant had reduced AdoMet levels and growth was retarded as compared with wild type. An elevated production of ethylene was measured in seedlings of the ethylene-overproducing eto3 mutant. When Met cycle knockout and ethylene overproduction were combined in the mtk/eto3 double mutant, a reduced capacity for ethylene synthesis was observed in seedlings. Even though mature eto3 plants did not produce elevated ethylene levels, and AdoMet homeostasis in eto3 plants did not differ from that in wild type, shoot growth was severely retarded. The mtk/eto3 double mutant displayed a metabolic plant phenotype that was similar to mtk with reduced AdoMet levels at sulfur-limiting conditions. We conclude from our data that the Met cycle contributes to the maintenance of AdoMet homeostasis, especially when de novo AdoMet synthesis is limited. Our data further showed that the Met cycle is required to sustain high rates of ethylene synthesis. Expression of the Met cycle genes AtMTN1, AtMTN2, AtMTK, AtARD1, AtARD2, AtARD3 and AtARD4 was not regulated by ethylene. This result is in contrast to that found in rice where OsARD1 and OsMTK are induced in response to ethylene. We hypothesize that the regulation of the Met cycle by ethylene may be restricted to plants that naturally produce high quantities of ethylene for a prolonged period of time.  相似文献   

20.
Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号