首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cycloheximide on virus specific RNA synthesis in Vero cells infected with either wild-strain (Edmonston) or subacute sclerosing panencephalitis strain measles virus was investigated. At 3 days postinfection, cells treated with cycloheximide (2.6 x 10(-4) M) and then exposed to [(3)H]uridine showed a marked increase in labeled virus-specific RNA. A major portion of this incremental labeled RNA was putative viral mRNA which sedimented at 16, 22, and 30S. Five distinct classes of polyribosomes, which were not evident in untreated cells, were found in cycloheximide-treated cells and each contained similar species of virus-specific RNA. Viral nucleocapsid RNA, 50 and 18S, was synthesized and encapsidated in the presence of cycloheximide. The latter observation is in apparent contrast to reports that cycloheximide inhibits replication of RNA of classical paramyxoviruses, and may indicate that mechanisms for replicating RNA of measles virus are different from those for replicating RNA of paramyxoviruses.  相似文献   

2.
Isolation and Properties of Newcastle Disease Virus Nucleocapsid   总被引:18,自引:17,他引:1       下载免费PDF全文
Deoxycholate (DOC) disrupted virions of Newcastle disease virus (NDV), releasing viral nucleocapsids. The nucleocapsids sedimented at about 200S in sucrose gradients and measured from 1.3 to 1.4 mu long by electron microscopy. NDV nucleo-capsids were resistant to pancreatic ribonuclease. These nucleocapsids contained all the 50S ribonucleic acid (RNA) in NDV virions, while virus-associated RNA sedimenting at less than 50S was external to the virions.  相似文献   

3.
4.
Infection of chicken embryo cells with vesicular stomatitis (VS) virus resulted in variable production of three classes of intracellular viral ribonucleocapsids with sedimentation coefficients of approximately 140S, 110S, and 80S, as well as three corresponding classes of released virions designated B, LT, and T. Intracellular nucleocapsids of each class contained three proteins of which the major N protein was firmly bound, and the minor L and NS1 proteins were readily dissociated with 0.5 m NaCl. The ribonucleic acid (RNA) species extracted from B, LT, and T virions, and from corresponding intracellular nucleocapsids, contained RNA species with approximate molecular weights of 3.2 x 10(6), 2.0 x 10(6), and 10(6), respectively, as determined by polyacrylamide gel electrophoresis. These values are roughly equivalent to sedimentation coefficients of 42S, 28S, and 23S for each of the virion and nucleocapsid RNA species. Cells infected at high multiplicity with undiluted passage VS virus gave rise primarily to virions and nucleocapsids containing 23S RNA, whereas cells productively infected with purified B virions produced predominantly B and LT virions and nucleocapsids. At late stages in the productive cycle of infection, more virions containing 42S RNA were produced, but the intracellular pool of nucleocapsids containing 28S and 23S RNA remained relatively constant. Additional studies by more refined techniques are required to test the hypothesis that nucleocapsids containing 28S and 23S RNA are precursors of the 42S RNA in infectious VS-B virions and that production of defective T and LT virions results from failure of ligation of the RNA precursors.  相似文献   

5.
K Hashimoto  K Suzuki    B Simizu 《Journal of virology》1975,15(6):1454-1466
Morphological and physical properties of a multiploid-forming mutant of Western equine encephalitis virus were studied. Electron micrographs of the infected cells showed that most of mutant virions bud from the plasma or vacuolar membrane as a multiploid particle containing a various number of nucleocapsids enclosed with a defined common envelope. The mutant virions contained three polypeptides which migrated to the position identical with those of wild type on discontinuous acrylamide gels. Cells infected with the mutant virus synthesized the same intracellular viral RNA species as was made after infection of wild type. Cytoplasmic nucleocapsids of the mutant sedimented at 140S and contained 42S virion RNA as those of wild type; they were indistinguishable from those of wild type in an electron microscope examination. On the other hand, mutant nucleocapsids isolated from extracellular virions sedimented as heterogeneous particles larger thant 140S and were shown to be pleomorphic and aggregate in electron micrographs. The budding process of this mutant seemed to be modified, so that it might form the multiploid with the alteration of its nucleocapsids.  相似文献   

6.
An RNA-dependent RNA polymerase activity has been found copurifying with measles virus infectivity and complement-fixing antigen in three Vero cell-grown variants of measles virus: the attenuated Edmonston B strain, the natural non-attenuated Edmonston strain, and a subacute sclerosing panencephalitis isolate, IP-3. Incubation of purified measles virions with immunoglobulin G derived from sera of monkeys hyperimmunized against measles specifically removes activity sedimenting in the density region of measles virions. The requirements of the reaction, which is RNase sensitive, are similar to those reported for other paramyxovirus-associated activities, including detergent, divalent cation, ribonucleoside triphosphates, and a reducing agent. The size classes of RNA synthesized correspond to those found in measles-infected cells, including 50, 35, and 16 to 20S. The product RNA of the Edmonston B virus-stimulated reaction was rendered RNase resistant by annealing with RNA extracted from purified Edmonston B virions. RNA from uninfected Vero cells was ineffective in the annealing reaction.  相似文献   

7.
The Edmonston strain of measles virus (MV) that utilizes the human CD46 as the cellular receptor produced cytopathic effects (CPE) in all of the primate cell lines examined. In contrast, the wild-type MV strains isolated in a marmoset B-cell line B95a (the KA and Ichinose strains) replicated and produced CPE in some but not all of the primate lymphoid cell lines. To determine the mechanism underlying this difference in cell tropism, we used a recently developed recombinant vesicular stomatitis virus (VSV) containing as a reporter the green fluorescent protein gene in lieu of the VSV G protein gene (VSVDeltaG*). MV glycoproteins were efficiently incorporated into VSVDeltaG*, producing the VSV pseudotypes. VSVDeltaG* complemented with VSV G protein efficiently infected all of the cell lines tested. The VSV pseudotype bearing the Edmonston hemagglutinin (H) and fusion (F) protein (VSVDeltaG*-EdHF) infected all cell lines in which the Edmonston strain caused CPE, including the rodent cell lines to which the human CD46 gene was stably transfected. The pseudotype bearing the wild-type KA H protein and Edmonston F protein (VSVDeltaG*-KAHF) infected all lymphoid cell lines in which the wild-type MV strains caused CPE as efficiently as VSVDeltaG*-EdHF, but it did not infect any of the cell lines resistant to infection with the KA strain. The results indicate that the difference in cell tropism between these MV strains was largely determined by virus entry, in which the H proteins of respective MV strains play a decisive role.  相似文献   

8.
Upon inoculation of cowpea protoplasts with the bottom component of cowpea mosaic virus, at least six virus-induced proteins (with sizes of 170, 110, 87, 84, 60, and 32 kilodaltons) are synthesized, but not the capsid proteins (37 and 23 kilodaltons). These bottom-component-induced proteins were studied with respect to their genetic origin and mode of synthesis. The analyses were based on their electrophoretic peptide patterns resulting from partial digestion with Staphylococcus aureus protease V8. Comparison of the peptide patterns of the virus-induced proteins with those of the cowpea mosaic virus RNA-coded polypeptides produced in rabbit reticulocyte lysate showed that the 170- and 32-kilodalton polypeptides, which are the first viral products in cowpea mosaic virus-infected cells, were actually coded by the bottom component RNA of the virus. The 110-, 87-, and 84-kilodalton polypeptides, and possibly the 60-kilodalton polypeptide, appeared to have amino acid sequences in common with the 170-kilodalton polypeptide, demonstrating that they were virus coded as well. The results indicated that cowpea mosaic virus bottom component RNA was translated in vivo into a single 200-kilodalton polyprotein from which probably all bottom-component-specific proteins arose by three successive cleavages.  相似文献   

9.
Some properties of influenza virus nucleocapsids   总被引:13,自引:10,他引:3       下载免费PDF全文
Nucleocapsids released from influenza virions by sodium deoxycholate sedimented heterogeneously in sucrose gradients. Highly infectious virus (complete) preparations yielded nucleocapsids with peak distributions at 64 and 56S; von Magnus type virus (incomplete) lacked 64S nucleocapsids. Treatment of influenza virus nucleocapsids with pancreatic ribonuclease rendered the associated viral ribonucleic acid (RNA) molecules acid-soluble, indicating that capsid proteins do not completely surround the viral RNA's. However, the capsid proteins remained associated after enzymatic hydrolysis of the RNA, as judged by persistently high sedimentation rates. Sedimentation rates of viral nucleocapsids reflected the sedimentation rates of the associated RNA's: 64S nucleocapsids contained 18S RNA, whereas 56S nucleocapsids contained 15S RNA, although in both cases RNA's sedimenting at 4 to 13S were also recovered. Furthermore, just as incomplete virions lacked 64S nucleocapsids, they also lacked 18S RNA. These findings support the hypothesis that the influenza virus genome is divided among several distinct pieces of RNA.  相似文献   

10.
This paper provides evidence for a measles virus receptor other than CD46 on transformed marmoset and human B cells. We first showed that most tissues of marmosets are missing the SCR1 domain of CD46, which is essential for the binding of Edmonston measles virus, a laboratory strain that has been propagated in Vero monkey kidney cells. In spite of this deletion, the common marmoset was shown to be susceptible to infections by wild-type isolates of measles virus, although they did not support Edmonston measles virus production. As one would expect from these results, measles virus could not be propagated in owl monkey or marmoset kidney cell lines, but surprisingly, both a wild-type isolate (Montefiore 89) and the Edmonston laboratory strain of measles virus grew efficiently in B95-8 marmoset B cells. In addition, antibodies directed against CD46 had no effect on wild-type infections of marmoset B cells and only partially inhibited the replication of the Edmonston laboratory strain in the same cells. A direct binding assay with insect cells expressing the hemagglutinin (H) proteins of either the Edmonston or Montefiore 89 measles virus strains was used to probe the receptors on these B cells. Insect cells expressing Edmonston H but not the wild-type H bound to rodent cells with CD46 on their surface. On the other hand, both the Montefiore 89 H and Edmonston H proteins adhered to marmoset and human B cells. Most wild-type H proteins have asparagine residues at position 481 and can be converted to a CD46-binding phenotype by replacement of the residue with tyrosine. Similarly, the Edmonston H protein did not bind CD46 when its Tyr481 was converted to asparagine. However, this mutation did not affect the ability of Edmonston H to bind marmoset and human B cells. The preceding results provide evidence, through the use of a direct binding assay, that a second receptor for measles virus is present on primate B cells.  相似文献   

11.
12.
A Hirano  M Ayata  A H Wang    T C Wong 《Journal of virology》1993,67(4):1848-1853
We have developed an in vitro nucleocapsid-binding assay for studying the function of the matrix (M) protein of measles virus (MV) (A. Hirano, A. H. Wang, A. F. Gombart, and T. C. Wong, Proc. Natl. Acad. Sci. USA, 89:8745-8749, 1992). In this communication we show that the M proteins of three MV strains that cause acute infection (Nagahata, Edmonston, and YN) bind efficiently to the viral nucleocapsids whereas the M proteins of four MV strains isolated from patients with subacute sclerosing panencephalitis (SSPE) (Biken, IP-3, Niigata, and Yamagata) fail to bind to the viral nucleocapsids. MV Biken (an SSPE-related virus) produces variant M sequences which encode two antigenically distinct forms of M protein. A serine-versus-leucine difference is responsible for the antigenic variation. MV IP-3 (an SSPE-related virus) also produces variant M sequences, some of which have been postulated to encode a functional M protein responsible for the production of an infectious revertant virus. However, the variant M proteins of Biken and IP-3 strains show no nucleocapsid-binding activity. These results demonstrate that the nucleocapsid-binding function is conserved in the M proteins of MV strains that cause acute infection and that the M proteins of MV strains that cause SSPE exhibit a common defect in this function. Analysis of chimeric M proteins indicates that mutations in the amino-terminal, carboxy-proximal, or carboxy-terminal region of the M protein all abrogate nucleocapsid binding, suggesting that the M protein conformation is important for interaction with the viral nucleocapsid.  相似文献   

13.
Both CD46 and signaling lymphocytic activation molecule (SLAM) have been shown to act as cellular receptors for measles virus (MV). The viruses on throat swabs from nine patients with measles in Japan were titrated on Vero cells stably expressing human SLAM. Samples from all but two patients produced numerous plaques on SLAM-expressing Vero cells, whereas none produced any plaques on Vero cells endogenously expressing CD46. The Edmonston strain of MV, which can use either CD46 or SLAM as a receptor, produced comparable titers on these two types of cells. The results strongly suggest that the viruses in the bodies of measles patients use SLAM but probably not CD46 as a cellular receptor.  相似文献   

14.
Replication of Edmonston strain measles virus was studied in several human lymphoblast lines, as well as in defined subpopulations of circulating human leukocytes. It was found that measles virus can productively infect T cells, B cells, and monocytes from human blood. These conclusions were derived from infectious center studies on segregated cell populations, as well as from ultrastructural analyses on cells labeled with specific markers. In contrast, mature polymorphonuclear cells failed to synthesize measles virus nucleocapsids even after infection at a relatively high multiplicity of infection. Measles virus replicated more efficiently in lymphocytes stimulated with mitogens than in unstimulated cells. However, both phytohemagglutinin and pokeweed mitogen had a negligible stimulatory effect on viral synthesis in purified populations of monocytes. In all instances the efficiency of measles virus replication by monocytes was appreciably less than that of mitogenically stimulated lymphocytes or of continuously culture lymphoblasts. Under standard conditions of infection, all of the surveyed lymphoblast lines produced equivalent amounts of measles virus regardless of the major histocompatibility (HL-A) haplotype. Hence, no evidence was found that the HL-A3,7 haplotype conferred either an advantage or disadvantage with respect to measles virus synthesis in an immunologically neutral environment. A persistent infection with measles virus could be established in both T and B lymphoblasts. The release of infectious virus from such persistently infected cells was stable over a period of several weeks and was approximately 100-fold less than peak viral titers obtained in each respective line after acute infection.  相似文献   

15.
The ultrastructure of CV-1 cells infected with subacute sclerosing panencephalitis (SSPE) viruses was compared with that of CV-1 cells infected with the wild or Edmonston strain of measles virus. Both SSPE viruses and the measles viruses produced two types of nucleocapsid structures: smooth filaments, 15 to 17 nm in diameter, and granular filaments, 22 to 25 nm. The smooth and granular filaments produced by SSPE and measles virus did not differ in appearance. In CV-1 cells infected with SSPE viruses, smooth filaments formed large intranuclear inclusions and granular filaments occupied a large area of the cytoplasm, but always spared the area under the cell membrane. Particles budding from the surface of these cells contained no nucleocapsids. In CV-1 cells infected with measles virus, only small aggregates of smooth filaments were seen in the nuclei. Granular filaments in the cytoplasm predominantly occupied the area under the cell membrane, and were aligned beneath the cell membrane in a parallel fashion and assembled into budding particles. These differences between SSPE and measles virus may be regarded as quantitative, but they do distinguish SSPE viruses from measles virus. Moreover, the formation of large nuclear inclusions filled with smooth filaments appears to be a characteristic process of SSPE, but not of measles, since this type of inclusion is invariably seen in SSPE brain tissues, brain cultures derived from them, and CV-1 cells infected with SSPE viruses.  相似文献   

16.
In patients with subacute sclerosing panencephalitis (SSPE), which is associated with persistent measles virus (MV) infection in the brain, little infectious virus can be recovered despite the presence of viral RNA and protein. Based on studies of brain tissue from SSPE patients and our work with MV-infected NSE-CD46(+) mice, which express the measles receptor CD46 on neurons, several lines of evidence suggest that the mechanism of viral spread in the central nervous system differs from that in nonneuronal cells. To examine this alternate mechanism of viral spread, as well as the basis for the loss of normal transmission mechanisms, infection and spread of MV Edmonston was evaluated in primary CD46(+) neurons from transgenic mice and differentiated human NT2 neurons. As expected, unlike that between fibroblasts, viral spread between neurons occurred in the absence of syncytium formation and with minimal extracellular virus. Electron microscopy analysis showed that viral budding did not occur from the neuronal surface, although nucleocapsids were present in the cytoplasm and aligned at the cell membrane. We observed many examples of nucleocapsids present in the neuronal processes and aligned at presynaptic neuronal membranes. Cocultures of CD46(+) and CD46(-) neurons showed that cell contact but not CD46 expression is required for MV spread between neurons. Collectively, these results suggest that the neuronal environment prevents the normal mechanisms of MV spread between neurons at the level of viral assembly but allows an alternate, CD46-independent mechanism of viral transmission, possibly through the synapse.  相似文献   

17.
T C Wong  M Ayata  S Ueda    A Hirano 《Journal of virology》1991,65(5):2191-2199
We identified an acute measles virus (Nagahata strain) closely related to a defective virus (Biken strain) isolated from a patient with subacute sclerosing panencephalitis (SSPE). The proteins of Nagahata strain measles virus are antigenically and electrophoretically similar to the proteins of Edmonston strain measles virus. However, the nucleotide sequence of the Nagahata matrix (M) gene is significantly different from the M genes of all the acute measles virus strains studied to date. The Nagahata M gene is strikingly similar to the M gene of Biken strain SSPE virus isolated several years later in the same locale. Eighty percent of the nucleotide differences between the Nagahata and Biken M genes are uridine-to-cytosine transitions known as biased hypermutation, which has been postulated to be caused by a cellular RNA-modifying activity. These biased mutations account for all but one of the numerous missense genetic changes predicted to cause amino acid substitutions. As a result, the Biken virus M protein loses conformation-specific epitopes that are conserved in the M proteins of Nagahata and Edmonston strain acute measles viruses. These conformation-specific epitopes are also absent in the cryptic M proteins encoded by the hypermutated M genes of two other defective SSPE viruses (Niigata and Yamagata strains). Nagahata-like sequences are found in the M genes of at least five other SSPE viruses isolated from three continents. These data indicate that Biken strain SSPE virus is derived from a progenitor closely resembling Nagahata strain acute measles virus and that biased hypermutation is largely responsible for the structural defects in the Biken virus M protein.  相似文献   

18.
B-34 is the designation of a hamster tumor-derived cell line induced by the Harvey sarcoma virus. This cell line produces virions which contain structural proteins common to edogenous hamster viruses and nucleic acid sequences of hamster, mouse, and rat origin. The sedimentation characteristics of the intracellular virus-specific RNA was determined in sucrose gradients after treatment with dimethylsulfoxide by molecular hybridization using complementary DNA of strict virus specificity. Hamster virus-specific RNA sedimented at 35S (major peak) as is characteristic of productive infection by type C leukemia viruses of other species. Rat virus-specific RNA sedimented at 30S which is characteristic of the sarcoma virus-related genome found in nonproducer cells transformed by Kirsten sarcoma virus. Both Harvey and Kirsten sarcoma viruses contain a related but not necessarily identical 30S rat-specific component which is also found in normal cultured rat cells. Mouse cells producing Harvey sarcoma virus also contain a rat-specific 30S RNA. Mouse virus-derived sequences also sedimented at 30S in B-34 cells and in a similar size range in Harvey virus-infected mouse cells. The possibility that the mouse and rat-derived sequences are present on a single 30S RNA species which would then be related to sarcomagenic potential is one attractive hypothesis suggested by these data.  相似文献   

19.
Measles is a highly contagious disease currently responsible for over one million childhood deaths, particularly in the developing world. Since alpha/beta interferons (IFNs) are pivotal players both in nonspecific antiviral immunity and in specific cellular responses, their induction or suppression by measles virus (MV) could influence the outcome of a viral infection. In this study we compare the IFN induction and sensitivity of laboratory-passaged attenuated MV strains Edmonston and Moraten with those of recent wild-type viruses isolated and passaged solely on human peripheral blood mononuclear cells (PBMC) or on the B958 marmoset B-cell line. We report that two PBMC-grown wild-type measles isolates and two B958-grown strains of MV induce 10- to 80-fold-lower production of IFN by phytohemagglutinin-stimulated peripheral blood lymphocytes (PBL) compared to Edmonston and Moraten strains of measles. Preinfection of PBL with these non-IFN-inducing MV isolates prevents Edmonston-induced but not double-stranded-RNA-induced IFN production. This suggests that the wild-type viruses can actively inhibit Edmonston-induced IFN synthesis and that this is not occurring by double-stranded RNA. Furthermore, the wild-type MV is more sensitive than Edmonston MV to the effect of IFN. MV is thus able to suppress the synthesis of the earliest mediator of antiviral immunity, IFN-alpha/beta. This could have important implications in the virulence and spread of MV.  相似文献   

20.
The pattern of actinomycin D-resistant RNA synthesis was examined during primary infection of HeLa cells by virulent Edmonston measles virus and in two HeLa clones persistently infected by the same strain of virus. One of these clones, K11, produces infectious virus of low virulence for HeLa cells, and the other, K11A-HG-1, has thus far failed to yield infectious virus. The patterns of virus-specific RNA synthesized in these three types of infection are qualitatively similar to each other and to the patterns of virus-specific RNA synthesis in other paramyxovirus infections. There were, however, quantitative differences. In addition, virions of the virulent Edmonston strain of measles virus were found to contain high-molecular-weight RNA with a sedimentation constant identical to that of Newcastle disease virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号