首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azetidine 2-carboxylic acid (AZ) was used as an analog of proline to investigate further the relationship between protein synthesis and ion transport. AZ does not inhibit protein assembly, but the proteins formed are ineffective as enzymes. At relatively low concentrations (50 μM) AZ was a potent inhibitor of release of ions to the xylem of excised roots of barley (Hordeum vulgare L.) and intact plants. Uptake to the root was also inhibited but to a lesser degree. A procedure was introduced for estimating unidirectional fluxes from measurements of net tracer uptake, net transport to the xylem, and net efflux from the roots. It was shown that inhibition of release to the xylem was not caused by reduction in influx at the plasmalemma or to stimulation of influx to the vacuoles. It was suggested that AZ was acting on the process of release from symplast to the xylem. The action of AZ is compared with similar effects on ion transport produced by p-fluorophenylalanine, cycloheximide, and abscisic acid.  相似文献   

2.
Evidence was obtained to support the hypothesis that ethylene is involved in xylem differentiation in primary pith explants of Lactuca sativa L. cv Romaine cultured in vitro. Xylem elements differentiated when explants were supplied indole-3-acetic acid (IAA) in combination with either the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene-releasing agent 2-chloroethylphosphonic acid (CEPA), or kinetin. In contrast, no xylem elements differentiated in the presence of IAA, kinetin, ACC, or CEPA alone, or when kinetin was supplied together with ACC or CEPA. These results show that ethylene will substitute qualitatively for cytokinin during auxin-induced xylogenesis, and suggest that both ethylene and auxin are required for xylem differentiation in Lactuca.  相似文献   

3.
Hydraulic conductance of stem and petioles increased in response to an increase in xylem sap ion concentration, and decreased in response to a decrease in the ion concentration in six temperate deciduous tree species. The ion sensitivity of hydraulic conductance of stem and petioles was higher than the ion sensitivity of the stem alone. The ion sensitivity was lowest in the earliest developmental stages of the xylem, and had a seasonal maximum in the second half of summer. The ion sensitivity was highest in slow-growing species and lowest in fast-growing species. The ion sensitivity correlated negatively with mean radius of xylem conduits, hydraulic conductance of stem and petioles, hydraulic conductance of leaf laminae, and stomatal conductance, and positively with response of the hydraulic conductance of leaf laminae to HgCl2, and stomatal response to a decrease in leaf water potential or abscisic acid. It was concluded that the high ion sensitivity of xylem hydraulic conductance is a relevant characteristic of slow growth and a conservative water use strategy.  相似文献   

4.
B. H. Brown  S. J. Neill  R. Horgan 《Planta》1986,167(3):421-423
Deuterium-labelled indole-3-acetic acid, abscisic acid and phthalimido-1-aminocyclopropane-1-carboxylic acid were found to separate from the unlabelled compounds on reverse-phase high-performance liquid chromatography (HPLC). A similar separation was found for the methyl esters of these compounds on normal-phase HPLC. Such separations may lead to substantial errors when these compounds are used as internal standards for quantitation by gas chromatography-mass spectrometry/selective ion detection, unless the complete chromatographic peaks are collected.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - Pht-ACC phthalimido-ACC - SIM selected ion monitoring  相似文献   

5.
Abstract This paper describes experiments to test the suggestion that developing xylem vessels are the site of exudation of ions from the root to the shoot. Electron microscopy is used to define the stage of development of xylem vessels in young barley roots along the length of the root. The amino acid analogue p-fluorophenyl-alanine (FPA) is used to inhibit ion transport from the stele to the xylem vessels at varied distances from the apex. In the presence of FPA protein synthesis is not inhibited but ineffective proteins are formed. It is shown that exudation of Cl? from the root can be inhibited in this way in parts of the root where all the xylem vessels are mature. This is in contradiction to the suggestion that root exudation is due to the activity of developing vessels. The hypothesis is thus strengthened that ion transport proceeds into the xylem vessels, which are fully mature and devoid of cytoplasm, and is due to release from the xylem parenchyma cells.  相似文献   

6.
Inanobe A  Furukawa H  Gouaux E 《Neuron》2005,47(1):71-84
Partial agonists produce submaximal activation of ligand-gated ion channels. To address the question of partial agonist action at the NR1 subunit of the NMDA receptor, we performed crystallographic and electrophysiological studies with 1-aminocyclopropane-1-carboxylic acid (ACPC), 1-aminocyclobutane-1-carboxylic acid (ACBC), and 1-aminocyclopentane-1-carboxylic acid (cycloleucine), three compounds with incrementally larger carbocyclic rings. Whereas ACPC and ACBC partially activate the NMDA receptor by 80% and 42%, respectively, their cocrystal structures of the NR1 ligand binding core show the same degree of domain closure as found in the complex with glycine, a full agonist, illustrating that the NR1 subunit provides a new paradigm for partial agonist action that is distinct from that of the evolutionarily related GluR2, AMPA-sensitive receptor. Cycloleucine behaves as an antagonist and stabilizes an open-cleft conformation. The NR1-cycloleucine complex forms a dimer that is similar to the GluR2 dimer, thereby suggesting a conserved mode of subunit-subunit interaction in AMPA and NMDA receptors.  相似文献   

7.
A method for the quantitation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugated form of 1-aminocyclopropane-1-carboxylic acid (ACC), in plants is described. [2,2,3,3-2H4]MACC has been used as an internal standard for selected ion monitoring/isotope dilution quantitation of MACC in wheat seedlings and in tomato leaves. This method is compared with a widely-used two step indirect assay for MACC, which is based upon hydrolysis of MACC to ACC and conversion of ACC by hypochlorite reagent to ethylene which is subsequently quantified by gas chromatography.  相似文献   

8.
Nickel speciation was studied in the xylem sap of Alyssum serpyllifolium ssp. lusitanicum, a Ni-hyperaccumulator endemic to the serpentine soils of northeast Portugal. The xylem sap was collected from plants growing in its native habitat and characterized in terms of carboxylic and amino acids content. The speciation of nickel was studied in model and real solutions of xylem sap by voltammetric titrations using Square Wave Voltammetry (SWV). The results showed that Ni transport in the xylem sap occurs mainly as a free hydrated cation (about 70%) and complexed with carboxylic acids, mainly citric acid (18%). Altogether, oxalic acid, malic acid, malonic acid and aspartic acid complexed less than 13% of total Ni. A negligible amount bounded to the amino acids, like glutamic acid and glutamine (<1%). Histidine did not play a role in Ni translocation in the xylem sap of A. serpyllifolium under field conditions. Amino acids are one of the main forms of N transport in the xylem sap, and under field conditions, N is usually a limited nutrient. We hypothesize that the translocation of Ni in the xylem sap as a free ion or chelated with carboxylic acids is ‘cheaper’ in terms of N resources.  相似文献   

9.
K Glund  W Schlumbohm  M Bapat  U Keller 《Biochemistry》1990,29(14):3522-3527
A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work [Gauvreau, D., & Waring, M. J. (1984) Can. J. Microbiol. 30, 439-450] revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis [Keller, U., Kleinkauf, H., & Zocher, R. (1984) Biochemistry 23, 1479-1484].  相似文献   

10.
The graft copolymerization of ethylacrylate (EA) onto chitosan initiated by potassium persulphate and Mohr's salt combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted chitosan was carried out by reaction of the ester group (-COOEt) with 2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid hydrazide which eventually produce chitosan-grafted-poly(2-amino-4,5-pentamethylene-thiophene-3-carboxylic acid N'-acryloyl-hydrazide) (chitosan-g-ATAH) chelating resin. The application of the modified resin for metal ion uptake was studied using Cu(2+), Co(2+) and Ni(2+) ions. The modified chelating resins were characterized using FTIR spectroscopy, SEM and X-ray diffraction.  相似文献   

11.
Two aspects of root to shoot communication in flooded plants are discussed (i) the formation of porous aerenchyma that enhances the passage of oxygen, and other gases, from shoots to roots and (ii) the movement of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in the transpiration stream, and the effect of this on ethylene production and epinastic curvature in the shoots. For aerenchyma studies a highly sensitive photoacoustic laser detector for ethylene was used to avoid interference associated with other methods of ethylene measurement that require tissue excision. ACC concentrations in xylem sap were measured by physico-chemical means to ensure correct identification and account for processing losses. Solute concentrations, e.g., abscisic acid (ABA), in xylem sap are shown to be distorted by temporary contamination caused by the method used to collect sap. Concentrations of solutes in xylem sap (e.g., ACC) are also altered by changes in sap flow brought about by conventional methods of sap collection or by experimental treatments such as flooding the soil. Ways of for overcoming these problems are described together with a summary of preliminary results.  相似文献   

12.
Washed cell and protoplast suspensions from Streptomyces echinatus A8331, which produces the quinoxaline antibiotic echinomycin, have been used to study the effects of analogues of the natural chromophore upon antibiotic biosynthesis. Addition of quinoline-2-carboxylic acid caused a decrease in the labelling of echinomycin from L-[methyl-14C]methionine and an increase in labelled chloroform-extractable material. Quinoxaline-2-carboxylic acid increased the incorporation of radioactivity into both fractions. Thieno[3,2-b]pyridine-5-carboxylic acid, 6-methylquinoline-2-carboxylic acid, and quinoline-2-carboxylic acid (also to a lesser extent 7-chloroquinoxaline-2-carboxylic acid) increased markedly the incorporation of radioactivity into chloroform-extractable material and virtually abolished echinomycin synthesis. Autoradiographs of extracts from suspensions supplemented with the latter four analogues revealed bis-substituted metabolites not found in unsupplemented cultures. When protoplast suspensions were incubated with L-[U-14C]serine, L-[U-14C]valine, or DL-[benzene ring-U-14C]tryptophan, quinoline-2-carboxylic acid, thieno[3,2-b]pyridine-5-carboxylic acid, and 6-methylquinoline-2-carboxylic acid directed the synthesis of antibiotically active bis derivatives at the expense of echinomycin. When analogues of quinoxaline-2-carboxylic acid previously found unsuitable for incorporation by growing cultures were tested in protoplast suspensions, only isoquinoline-3-carboxylic acid caused a large increase in the incorporation of radioactivity from L-[methyl-14C]methionine into chloroform-extractable material. With DL-[benzene ring-U-14C]tryptophan as the radiolabel, benzotriazoline-2-acetic acid and 6-bromoquinoxaline-2-carboxylic acid as well as isoquinoline-3-carboxylic acid sharply reduced the labelling of echinomycin.  相似文献   

13.
From soil enrichment cultures four strains, using quinoline-4-carboxylic acid as sole source of energy and carbon, have been isolated. According to their physiological properties these bacteria have been identified as Microbacterium sp. designated H2, as Agrobacterium sp. designated 1b and Pimelobacter simplex designated 4B and 5B. Metabolites of the degradation pathway of quinoline-4-carboxylic acid have been isolated and identified. With Pimelobacter simplex 4B and 5B 2-oxo-1,2-dihydroquinoline-4-carboxylic acid and 8-hydroxycoumarin-4-carboxylic acid were isolated. The Agrobacterium strain accumulated 2-oxo-1,2-dihydroquinoline-4-carboxylic acid and 2-oxo-1,2,3,4-tetrahydroquinoline-4-carboxylic acid in the media during growth; with Microbacterium sp. H2 we only found 8-hydroxycoumarin-4-carboxylic acid. With mutants of Microbacterium sp. H2 which were induced with N-methyl-N'-nitro-N-nitrosoguanidine we found 2-oxo-1,2-dihydroquinoline-4-carboxylic acid, 8-hydroxy-coumarin-4-carboxylic acid and 2,3-dihydroxyphenyl-succinic acid.  相似文献   

14.
The application of a chiral ligand-exchange column (CLEC) for the direct high-performance liquid chromatographic enantioseparation of unusual secondary amino acids using D-penicillamine-Cu(II) complex as chiral selector is reported. The amino acids investigated were pyrrolidine-2-carboxylic acid, piperidine-2-carboxylic acid, piperazine-2-carboxylic acid, morpholine-3-carboxylic acid, and thiomorpholine-3-carboxylic acid analogs. Chromatographic results are given as the retention, separation, and resolution factors. The chromatographic conditions were varied to achieve optimal separation. The elution sequence of the enantiomers was determined and in most cases the S isomer eluted before R.  相似文献   

15.
Primary pulvini of Mimosa pudica L. displaced from their position display gravitropic movements beginning about 15 minutes after their reorientation. Ethephon, an ethylene-releasing compound, and 1-aminocyclopropane-1-carboxylic acid, an intermediate in ethylene biosynthesis, enhance these movements at a concentration as low as 10 nanomolar. Inhibitors of ethylene synthesis (l-α-(2-aminoethoxyvinyl)glycine, (aminooxy)acetic acid, and Co2+) reduce the amplitude of the movements. The promotive action of 1-aminocyclopropane-1-carboxylic acid is abolished by l-α-(2-aminoethoxyvinyl)glycine. These results permit one to conclude that ethylene may modify the curvature movement but not the initiation of the gravitropic reaction. With reference to the pulvinus functioning based on turgor variations and ion migrations inside the organ, namely K+ acting as the osmoticum, the data suggest that ethylene may act by increasing the membrane permeability to water and/or by altering an ion pump.  相似文献   

16.
Waterlogging is known to cause an increase in ethylene synthesis in the shoot which results in petiole epinasty. Evidence has suggested that a signal is synthesized in the anaerobic roots and transported to the shoot where it stimulates ethylene synthesis. Experimental data are presented showing that 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, serves as the signal. Xylem sap was collected from detopped tomato plants (Lycopersicon esculentum Mill. cv. VFN8). ACC in the sap was quantitated by a sensitive and specific assay, and its tentative chemical identity verified by paper chromatography. ACC levels in both roots and xylem sap increased markedly in response to waterlogging or root anaerobiosis. The appearance of ACC in the xylem sap of flooded plants preceded both the increase in ethylene production and epinastic growth, which were closely correlated. Plants flooded and then drained showed a rapid, simultaneous drop in ACC flux and ethylene synthesis rate. ACC supplied through the cut stem of tomato shoots at concentrations comparable to those found in xylem sap caused epinasty and increased ethylene production. These data indicate that ACC is synthesized in the anaerobic root and transported to the shoot where it is readily converted to ethylene.  相似文献   

17.
A mixture of cysteamine and glyoxylate, proposed by Hamilton et al. to form the physiological substrate of hog kidney D-amino acid oxidase (Hamilton, G. A., Buckthal, D. J., Mortensen, R. M., and Zerby, K. W. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 2625-2629), was confirmed to act as a good substrate for the pure enzyme. As proposed by those workers, it was shown that the actual substrate is thiazolidine-2-carboxylic acid, formed from cysteamine and glyoxylate with a second order rate constant of 84 min-1 M-1 at 37 degrees C, pH 7.5. Steady state kinetic analyses reveal that thiazolidine-2-carboxylic acid is a better substrate at pH 8.5 than at pH 7.5. At both pH values, the catalytic turnover number is similar to that obtained with D-proline. D-Amino acid oxidase is rapidly reduced by thiazolidine-2-carboxylic acid to form a reduced enzyme-imino acid complex, as is typical with D-amino acid oxidase substrates. The product of oxidation was shown by NMR to be delta 2-thiazoline-2-carboxylic acid. Racemic thiazolidine-2-carboxylic acid is completely oxidized by the enzyme. The directly measured rate of isomerization of L-thiazolidine-2-carboxylic acid to the D-isomer was compared to the rate of oxidation of the L-isomer by D-amino acid oxidase. Their identity over the range of temperature from 2-30 degrees C established that the apparent activity with the L-amino acid can be explained quantitatively by the rapid, prior isomerization to D-thiazolidine-2-carboxylic acid.  相似文献   

18.
2-Iodo-3-ureidopropionic acid resulting from the hydrolysis of 5-iodo-5,6-dihydrouracil catalyzed by either dihydrouracil amidohydrolase or hydroxide ion cyclizizes to yield 2-amino-2-oxazoline-3-carboxylic acid. This cyclization involves intramolecular attack of the ureido oxygen atom on carbon two of the ureidoacid to yield iodide ion and the oxazoline as products. The kinetics of this cyclization indicate that from pH 2 to 9 the reaction rate is pH independent. Below pH 2 the rate is diminished due to protonation of the ureido group. Above pH 12 the rate increases dramatically probably due to proton abstraction which would dramatically increase the nucleophilic character of the ureido function. In the pH independent region the reaction is not subject to catalysis by external buffers.  相似文献   

19.
CYP199A2, a bacterial P450 monooxygenase from Rhodopseudomonas palustris, was previously reported to oxidize 2-naphthoic acid and 4-ethylbenzoic acid. In this study, we examined the substrate specificity and regioselectivity of CYP199A2 towards indole- and quinolinecarboxylic acids. The CYP199A2 gene was coexpressed with palustrisredoxin gene from R. palustris and putidaredoxin reductase gene from Pseudomonas putida to provide the redox partners of CYP199A2 in Escherichia coli. Following whole-cell assays, reaction products were identified by mass spectrometry and NMR spectroscopy. CYP199A2 did not exhibit any activity towards indole and indole-3-carboxylic acid, whereas this enzyme oxidized indole-2-carboxylic acid, indole-5-carboxylic acid, and indole-6-carboxylic acid. Indole-2-carboxylic acid was converted to 5- and 6-hydroxyindole-2-carboxylic acids at a ratio of 59:41. In contrast, the indole-6-carboxylic acid oxidation generated only one product, 2-indolinone-6-carboxylic acid, at a rate of 130 mol (mol P450)−1 min−1. Furthermore, CYP199A2 also oxidized quinoline-6-carboxylic acid, although this enzyme did not exhibit any activity towards quinoline and its derivatives with a carboxyl group at the C-2, C-3, or C-4 positions. The oxidation product of quinoline-6-carboxylic acid was identified to be 3-hydroxyquinoline-6-carboxylic acid, which was a novel compound. These results suggest that CYP199A2 may be a valuable biocatalyst for the regioselective oxidation of various aromatic carboxylic acids.  相似文献   

20.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号