首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemistry and physiology of n-3 fatty acids.   总被引:10,自引:0,他引:10  
W E Lands 《FASEB journal》1992,6(8):2530-2536
Considering the n-3 fatty acids to be partial agonists relative to n-6 fatty acids helps consolidate into a unified interpretation the many diverse reports and controversies on the actions of these two types of essential fatty acids. Some research reports illustrate the similarities between these two types and some emphasize the differences, leaving readers to evaluate the status of n-3 fatty acids from a viewpoint that is conceptually similar to regarding a glass of water as half empty or half full. Both n-3 and n-6 types of fatty acids must be obtained through the diet because they are not synthesized de novo by vertebrates. Both types can support important physiological and developmental processes, can form eicosanoids (prostaglandins, leukotrienes, lipoxins, etc.), can be esterified to and hydrolyzed from tissue glycerolipids, and can be metabolically elongated and desaturated to a variety of highly unsaturated fatty acids. However, some nonesterified n-6 acids are vigorously converted to potent n-6 eicosanoids that exert intense agonist actions at eicosanoid receptors, whereas the n-3 acids less vigorously form n-3 eicosanoids that often produce less intense (partial) actions. Because both types owe their presence in vertebrate tissues to dietary intake, important physiological consequences follow the inadvertent selection of different average daily dietary supplies of these two types of polyunsaturated fatty acids.  相似文献   

2.
Metabolic origin of urinary 3-hydroxy dicarboxylic acids   总被引:1,自引:0,他引:1  
K Y Tserng  S J Jin 《Biochemistry》1991,30(9):2508-2514
3-Hydroxy dicarboxylic acids with chain lengths ranging from 6 to 14 carbons are excreted in human urine. The urinary excretion of these acids is increased in conditions of increased mobilization of fatty acids or inhibited fatty acid oxidation. Similar urinary profiles of 3-hydroxy dicarboxylic acids were also observed in fasting rats. The metabolic genesis of these urinary 3-hydroxy dicarboxylic acids was investigated in vitro with rat liver postmitochondrial and mitochondrial fractions. 3-Hydroxy monocarboxylic acids ranging from 3-hydroxyhexanoic acid to 3-hydroxyhexadecanoic acid were synthesized. In the rat liver postmitochondrial fraction fortified with NADPH, these 3-hydroxy fatty acids with carbon chains equal to or longer than 10 were oxidized to (omega - 1)- and omega-hydroxy metabolites as well as to the corresponding 3-hydroxy dicarboxylic acids. 3-Hydroxyhexanoic (3OHMC6) and 3-hydroxyoctanoic (3OHMC8) acids were not metabolized. Upon the addition of mitochondria together with ATP, CoA, carnitine, and MgCl2, the 3-hydroxy dicarboxylic acids were converted to 3-hydroxyoctanedioic, trans-2-hexenedioic, suberic, and adipic acids. In the urine of children with elevated 3-hydroxy dicarboxylic acid levels, 3OHMC6, 3OHMC8, 3-hydroxydecanoic, 3,10-dihydroxydecanoic, 3,9-dihydroxydecanoic, and 3,11-dihydroxydodecanoic acids were identified. On the basis of these data, we propose that the urinary 3-hydroxy dicarboxylic acids are derived from the omega-oxidation of 3-hydroxy fatty acids and the subsequent beta-oxidation of longer chain 3-hydroxy dicarboxylic acids. These urinary 3-hydroxy dicarboxylic acids are not derived from the beta-oxidation of unsubstituted dicarboxylic acids.  相似文献   

3.
The biologic effect of eicosanoids depends in large measure upon the relative masses in tissues of eicosanoids derived from the n-6 fatty acids, dihomogammalinolenic acid and arachidonic acid, and the n-3 fatty acid, eicosapentaenoic acid. Generation of this tissue balance is related to the relative cellular masses of these precursor fatty acids, the competition between them for entry into and release from cellular phospholipids, and their competition for the enzymes that catalyze their conversion to eicosanoids. In order to better understand these processes, we studied the cellular interactions of n-6 and n-3 fatty acids using an essential fatty acid-deficient, PGE-producing, mouse fibrosarcoma cell line, EFD-1. Unlike studies using cells with endogenous pools of n-6 and n-3 fatty acids, the use of EFD-1 cells enabled us to examine the metabolic fate of each family of fatty acids both in the presence and in the absence of the second family of fatty acids. Thus, the specific effects of one fatty acid family on the other could be directly assessed. In addition, we were able to replete the cells with dihomogammalinolenic acid (DHLA), arachidonic acid (AA), and eicosapentaenoic acid (EPA) of known specific activities; thus the masses of cellular DHLA, AA, and EPA, and their metabolites, PGE1, PGE2, and PGE3, respectively, could be accurately quantitated. The major findings of this study were: 1) n-6 fatty acids markedly stimulated the elongation of EPA to 22:5 whereas n-3 fatty acids inhibited the delta 5 desaturation of DHLA to AA and the elongation of AA to 22:4; 2) n-6 fatty acids caused a specific redistribution of cellular EPA from phospholipid to triacylglycerol; 3) n-3 fatty acids reduced the mass of DHLA and AA only in phosphatidylinositol whereas n-6 fatty acids reduced the mass of EPA to a similar extent in all cellular phospholipids; and 4) n-3 fatty acids caused an identical (33%) reduction in the bradykinin-induced release of PGE1 and PGE2, whereas n-6 fatty acids stimulated PGE3 release 2.3-fold. Together, these highly quantitative metabolic data increase our understanding of the regulation of both the cellular levels of DHLA, AA, and EPA, and their availability for eicosanoid synthesis. In addition, these findings provide a context for the effective use of these fatty acids in dietary therapies directed at modulation of eicosanoid production.  相似文献   

4.
The ribosomal protein S6 kinase 1 (S6K1) is emerging as a common downstream target of signalling by hormones and nutrients such as insulin and amino acids. Here, we have investigated how amino acids signal through the S6K1 pathway. First, we found that a commercial anti-phospho-Thr389-S6K1 antibody detects an 80-90 kDa protein that is rapidly phosphorylated in response to amino acids. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI-3 kinase inhibitors, and knockdown experiments showed that this protein was not S6K1. Looking for candidate targets of this phosphorylation, we found that amino acids stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. In turn, these phosphorylations required the activity of either p38 or ERK MAP kinases, which could compensate for each other. Moreover, we show that these MAP kinases are also needed for the amino acid-induced phosphorylation of S6K1 at Thr421/Ser424, as well as for that of S6K1 substrate, the S6 ribosomal protein. Consistent with these results, concomitant inhibition of p38 and ERK pathways also antagonised the well-known effects of amino acids on the process of autophagy. Altogether, these findings demonstrate a previously unknown role for MAP kinases in amino acid signalling.  相似文献   

5.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

6.
S J Jin  K Y Tserng 《Biochemistry》1990,29(37):8540-8547
Previously, we [Jin, S.-J., & Tserng, K.-Y. (1989) J. Lipid Res. 30, 1611-1619] reported the structures of urinary octenedioic acids occurring in patients with dicarboxylic aciduria. We proposed that these unsaturated octenedioic acids were derived from the oxidation of oleic and linoleic acids. By comparison with synthetic decenedioic acids, we have further identified the higher homologues of unsaturated dicarboxylic acids in urine as cis-5-decenedioic (c5DC10), cis-4-decenedioic (c4DC10), cis-3-decenedioic (cDC10), trans-4-decenedioic, trans-3-decenedioic, cis-5-dodecenedioic (c5DC12), cis-3-dodecenedioic (c3DC12), and trans-3-dodecenedioic acids. The presence of these isomeric decenedioic and dodecenedioic acids in urine is consistent with the proposed metabolic origins. In vitro studies using synthetic unsaturated fatty acids and rat liver homogenates support the proposed metabolic origins of these acids. The following metabolic sequences are proposed for metabolites derived from oleic acid: (route A) cis-5-tetradecenoic acid----cis-5-tetradecenedioic acid----c5DC12----c5DC10----suberic (DC8)----adipic (DC6); (route B) cis-3-dodecenoic acid----c3DC12----c3DC10----c3DC8 (cis-3-octenedioic)----DC6. A similar route is derived from linoleic acid: cis-4-decenoic acid----c4DC10----c4DC8 (cis-4-octenedioic)----DC6. The presence of a double bond at position 3, 4, or 5 of fatty acid appears to be rate limiting for further beta-oxidation; therefore, metabolic products with cis-3, cis-4, or cis-5 structure accumulate. Urinary DC8 and DC6 are derived partially from the metabolic degradation of these unsaturated dicarboxylic acids.  相似文献   

7.
Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.  相似文献   

8.
The brains of patients with inherited abnormalities in peroxisomal structure and function contain greatly increased proportions of a homologous series of unique polyenoic fatty acids with carbon chain lengths ranging from 26 to 38. Based on evidence by chemical ionization and electron impact mass spectrometry before and after catalytic hydrogenation, and argentation t.l.c., these lipids have been tentatively identified as 26:5, 28:5, 30:5, 30:6, 30:7, 32:5, 32:6, 32:7, 34:5 and 34:6 fatty acids. A further two fatty acids eluting at very high temperatures from gas chromatography columns have been tentatively identified on the basis of their chemical ionization mass spectra as 36:6 and 38:6 fatty acids.  相似文献   

9.
This study describes the effect of some saturated and unsaturated free fatty acids and acyl-CoA thioesters on Trypanosoma cruzi glucose 6-phosphate dehydrogenase and hexokinase activities. Glucose 6-phosphate dehydrogenase was sensitive to the destabilizing effect provoked by free fatty acids, while hexokinase remained unaltered. Glucose 6-phosphate dehydrogenase inhibition by free fatty acids was dependent on acid concentration and chain length. Both enzymes were inhibited when they were incubated with acyl-CoA thioesters. The acyl-CoA thioesters inhibited glucose 6-phosphate dehydrogenase at a lower concentration than the free fatty acids; the ligands glucose 6-phosphate and NADP+ afforded protection. The inhibition of hexokinase by acyl-CoAs was not reverted when the enzyme was incubated with ATP. The type of inhibition found with acyl-CoAs in relation to glucose 6-phosphate dehydrogenase and hexokinase suggests that this type inhibition may produce an in vivo modulation of these enzymatic activities.  相似文献   

10.
Possible mechanisms of action of an anti-Pasteurella pestis factor   总被引:4,自引:0,他引:4       下载免费PDF全文
Anti-Pasteurella pestis factor (APF) inhibited bacterial growth, but there was no evidence that APF from either mouse or guinea pig or selected fatty acids physically disrupted the cell wall. The fatty acids selected were representative of those found in APF. APF inhibited oxidation of beta-d-glucose but not oxidation of glucose-6-phosphate, whereas fatty acids inhibited the oxidation of glucose-6-phosphate but not oxidation of beta-d-glucose. The oxidation of 6-phosphogluconic acid was inhibited by both APF and free fatty acids. Furthermore, APF and potassium laurate inhibited 6-phosphogluconic dehydrogenase in a cell-free extract of P. pestis strain E.V. 76. No evidence of beta-d-glucose or glucose-6-phosphate dehydrogenases was found in the cell-free extract. The results suggested that APF and fatty acids may kill P. pestis by inactivating 6-phosphogluconic acid dehydrogenase. The effects of these agents on other enzyme systems were not excluded.  相似文献   

11.
M Yoshii  K Kihira  J Shoda  T Osuga  T Hoshita 《Steroids》1990,55(11):512-515
Unusual bile acids, 3 alpha, 6 alpha, 7 alpha, 12 alpha-, and 3 alpha, 6 beta, 7 beta, 12 alpha-tetrahyroxy-5 beta-cholan-24-oic acids, were identified in all amniotic fluid (four samples) and urine (six samples) from adult patients with cholestatic liver disease by gas-liquid chromatography/mass spectrometry. For the certain identification of these bile acids in the biologic samples, the chemical syntheses of 3 alpha, 6 beta, 7 alpha, 12 alpha- and 3 alpha, 6 beta, 7 beta, 12 alpha-tetrahydroxy-5 beta-cholan-24-oic acids were conducted.  相似文献   

12.
The liverwort Marchantia polymorpha contains high proportions of arachidonic and eicosapentaenoic acids. In general, these C20 polyunsaturated fatty acids (PUFA) are synthesized from linoleic and alpha -linolenic acids, respectively, by a series of reactions catalyzed by Delta(6)-desaturase, an ELO-like enzyme involved in Delta(6) elongation and Delta(5)-desaturase. Here we report the isolation and characterization of the cDNAs, MpDES6, MpELO1 and MpDES5, coding for the respective enzymes from M. polymorpha. Co-expression of the MpDES6, MpELO1 and MpDES5 cDNAs resulted in the accumulation of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris. Interestingly, Delta(6) desaturation by the expression of the MpDES6 cDNA appears to occur both in glycerolipids and the acyl-CoA pool, although other lower-plant Delta(6)-desaturases are known to have a strong preference for glycerolipids.  相似文献   

13.
Fat-1 transgenic mice: a new model for omega-3 research   总被引:3,自引:0,他引:3  
An appropriate animal model that can eliminate confounding factors of diet would be very helpful for evaluation of the health effects of nutrients such as n-3 fatty acids. We recently generated a fat-1 transgenic mouse expressing the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase that converts n-6 to n-3 fatty acids (which is absent in mammals). The fat-1 transgenic mice are capable of producing n-3 fatty acids from the n-6 type, leading to abundant n-3 fatty acids with reduced levels of n-6 fatty acids in their organs and tissues, without the need of a dietary n-3 supply. Feeding an identical diet (high in n-6) to the transgenic and wild-type littermates can produce different fatty acid profiles in these animals. Thus, this model allows well-controlled studies to be performed, without the interference of the potential confounding factors of diet. The transgenic mice are now being used widely and are emerging as a new tool for studying the benefits of n-3 fatty acids and the molecular mechanisms of their action.  相似文献   

14.
A study has been made of the growth-regulating activity of a number of phenoxy acids possessing halogen or methyl substituents in the 2:6- or 33- positions of the nucleus. The pea curvature, Avena cylinder elongation and tomato-leaf epinasty tests have been used for assessing biological activity. The results show that in general 3:s- is more closely associated with inactivity than 2:6- substitution. The introduction of a further halogen atom into the 4- position does not enhance activity in the 2:6- compounds but does so in the 3:s- derivatives. Although the 2:4:6-trichloro- and 2:4:6-tribromo-phenoxyacetic acids are almost inactive, a:4-dichloro-6-fluoro- and 2:4-dibromo-6-fluoro- phenoxyacetic acids are very highly active. When a methyl group is substituted into the side-chain of certain phenoxyacetic acids possessing 2:6- substituents, growth-promoting activity is increased. Some of these findings conflict with recent theories on mode of action of phenoxy acids which are discussed in relation to the present work.  相似文献   

15.
The presence and identity of very long chain polyunsaturated fatty acids from three freshwater crustacean species, Bathynella natans, B. baicalensis and Baicalobathynella magna from Lake Baikal and caves of central Europe were determined by means of liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS with APCI). LC-MS with APCI enabled the identification of more than 50 very long chain polyunsaturated fatty acids. These acids were described in the crustaceans for the first time, predominantly 26:5n6, 28:7n6, 30:7n3 and 40:7n6. A hypothesis for the biosynthesis of these acids is proposed.  相似文献   

16.
The biosynthesis of fatty acids has been studied in lactating rabbits at 6h after intravenous injection of sodium [1-(14)C]acetate. The specific radioactivities of the individual fatty acids (C(6:0) to C(14:0)) and the proportions of these fatty acids synthesized were similar in mammary tissue and milk. Hexanoic acid had the highest specific radioactivity, and the C(8:0)-C(14:0) fatty acids had similar specific radioactivities, which were about five times those of C(16) and C(18) acids. No radioactivity was detected in fatty acids of chain length C(14) in these tissues were similar to those of the long-chain fatty acids in the milk and mammary gland. The results show that the C(4:0)-C(14:0) fatty acids are synthesized within the mammary gland rather than by fatty acid uptake from circulating blood or by oxidation of long-chain fatty acids within the gland. We conclude that de novo synthesis of esterified fatty acids in vivo by this tissue has a high degree of chain-length specificity.  相似文献   

17.
Reduced omega-3 and omega-6 fatty acids in red blood cell (RBC) membranes are often found in patients with schizophrenia. Here we investigated whether membrane concentrations of these fatty acids might vary as a function of schizotypal traits in non-psychotic individuals. Twenty-five healthy adults completed the O-LIFE schizotypal trait inventory and fatty acid composition of their venous blood samples was analysed via gas-liquid chromatography. Correlations between schizotypy measures and RBC fatty acids were examined and comparisons made between groups high and low on fatty acid measures and schizotypy scores. The omega-6 fatty acids arachidonic, adrenic and docosapentaenoic acid were directly related to positive schizotypal trait measures, as were most omega-3 fatty acids, but none were related to a negative, withdrawn form of schizotypy. Our findings of high RBC concentrations of omega-3 and omega-6 fatty acids in healthy adults with positive schizotypal traits clearly contrast with the low levels often found in schizophrenia, but are quite consistent with evidence that omega-3 fatty acids (notably EPA) can be useful in the treatment of schizophrenic illness.  相似文献   

18.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

19.
When 5.10(6) hepatocytes were incubated for 40 min with 0.015-0.3 mM (1-14C)-labeled 6,9,12-octadecatrienoic acid or (1-14C)-labeled 6,9,12,15-octadecatetraenoic acid there was a concentration-dependent acylation of radioactive metabolites into both phospholipids and triacylglycerol. However, when the concentration of either substrate exceeded 60-150 microM there was no further increase in the metabolism of either substrate to longer-chain (n-6) and (n-3) acids. When cells were then incubated for various periods of time with 60 microM substrate there was initial rapid removal of the substrate which was accompanied by its acylation into lipids. Over time, the amount of both substrates in lipids declined without an overall drop in specific activity. This decline was accompanied by an increase in long-chain (n-6) and (n-3) fatty acids. Similar results were obtained when the time-dependent metabolism of the two substrates was examined in individual hepatocyte phospholipids. Collectively, these findings suggest that when these two 18-carbon acids are produced by desaturation of dietary linoleate and linolenate that they are in part initially acylated into a labile phospholipid pool. Rapid release and subsequent further metabolism to longer-chain (n-6) and (n-3) acids may explain why these products of the 6-desaturase do not accumulate in membrane lipids.  相似文献   

20.
The effect of feeding and starvation on growth, gross body composition and fatty acid composition of body muscle and liver were investigated in juvenile African catfish ( Clarias gariepinus ). The relative composition of fatty acids was influenced by starvation. In both liver and muscle there were marked relative decreases of 14: 0, 16: 1n9 and 18: 1n9 fatty acids and relative increases of 20: 5n3 and 22: 6n3 when these were compared to the controls. Preference of utilization of fatty acids from liver and body muscle during starvation was highest for 14: 0>16: 1n9>18: 1n9 and conservation highest for 22: 6n3>20: 5n3. The changes of these fatty acids were smaller in muscle than in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号