首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

2.
3.
Proteolysis of insulin-like growth factor binding proteins (IGFBPs), the major carrier of insulin-like growth factors (IGFs) in the circulation, is an essential mechanism to regulate the bioavailability and half-live of IGFs. Screening for peptides in human hemofiltrate, stimulating the survival of PC-12 cells, resulted in the isolation of C-terminal IGFBP-2 fragments and intact IGF-II co-eluting during the chromatographic purification procedure. The IGFBP-2 fragments exhibited molecular masses of 12.7 and 12.9kDa and started with Gly169 and Gly167, respectively. The fragments were able to bind both IGFs. The stimulatory effect of the purified fraction on the survival of the PC-12 cells could be assigned exclusively to IGF-II, since it was abolished by the addition of neutralizing IGF-II antibodies. We suggest that in the circulation IGF-II is not only complexed with intact IGFBP but also with processed IGFBP-2 fragments not impairing the biological activity of IGF-II.  相似文献   

4.
A variety of human cell types, including human osteoblasts (hOBs), produce an IGFBP-4 protease, which cleaves IGFBP-4 in the presence of IGF-II. Recently, the pregnancy-associated plasma protein (PAPP)-A has been determined to be the IGF-II-dependent IGFBP-4 protease produced by human fibroblasts. This study sought to define the mechanism by which IGF-II enhances IGFBP-4 proteolysis. Addition of PAPP-A antibody blocked the IGFBP-4 proteolytic activity in hOB conditioned medium (CM), suggesting that PAPP-A is the major IGFBP-4 protease in hOB CM. Pre-incubation of IGFBP-4 with IGF-II, followed by removal of unbound IGF-II, led to IGFBP-4 proteolysis without further requirement of the presence of IGF-II in the reaction. In contrast, prior incubation of the partially purified IGFBP-4 protease from either hOB CM or human pregnancy serum with IGF-II did not lead to IGFBP-4 proteolysis unless IGF-II was re-added to the assays. To further confirm that the interaction between IGF-II and IGFBP-4 is required for IGFBP-4 protease activity, we prepared IGFBP-4 mutants, which contained the intact cleavage site (Met135-Lys136) but lacked the IGF binding activity, by deleting the residues Leu72-His74 in the IGF binding domain or Cys183-Glu237 that contained an IGF binding enhancing motif. The IGFBP-4 protease was unable to cleave these IGFBP-4 mutants, regardless of whether or not IGF-II was present in the assay. Conversely, an IGFBP-4 mutant with His74 replaced by an Ala, which exhibited normal IGF binding activity, was effectively cleaved in the presence of IGF-II. Taken together, these findings provided strong evidence that the interaction between IGF-II and IGFBP-4, rather than the direct interaction between IGF-II and IGFBP-4 protease, is required for optimal IGFBP-4 proteolysis.  相似文献   

5.
Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) have important anabolic functions in normal tissue growth, which in excess may lead to tumorigenesis. In the present study, circulating IGF-I, IGF-II and their binding proteins (IGFBP-3, IGFBP-2 and IGFBP-1) were determined in 92 adult patients with gastrointestinal inflammation (Crohn's disease, colitis ulcerosa, gastritis, duodenitis errosiva, gastrointestinal candidiasis, and rotaviral and adenoviral enteritis). Serum IGF concentrations were measured by radioimmunoassay, while IGFBP profiles and IGFBP proteolytic patterns were characterized by immunoblotting. Concentrations of both IGF-I and IGF-II were significantly (p < 0.001) lower in patients than in healthy subjects. Immunoblotting demonstrated a decreased amount of intact IGFBP-3 (by approximately 60%), whereas IGFBP-2 and IGFBP-1 were increased (approximately 1.7 and 3.5-fold, respectively). No alteration in either fragmentation pattern or relative degree of proteolysis was detected in patients compared to the control group. It may be concluded that the IGF system is seriously imbalanced in patients with gastrointestinal inflammation, regardless of primary cause. These findings may help towards a better understanding of the metabolic outcome of the inflammatory process, and possibly in predicting the efficiency of patient recovery.  相似文献   

6.
In the circulation, most of the insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases are bound in high molecular mass complexes of > or =150 kDa. To investigate molecular interactions between proteins involved in IGF.IGFBP complexes, Cohn fraction IV of human plasma was subjected to IGF-II affinity chromatography followed by reversed-phase high pressure liquid chromatography and analysis of bound proteins. Mass spectrometry and Western blotting revealed the presence of IGFBP-3, IGFBP-5, transferrin, plasminogen, prekallikrein, antithrombin III, and the soluble IGF-II/mannose 6-phosphate receptor in the eluate. Furthermore, an IGFBP-3 protease cleaving also IGFBP-2 but not IGFBP-4 was co-purified from the IGF-II column. Inhibitor studies and IGFBP-3 zymography have demonstrated that the 92-kDa IGFBP-3 protease belongs to the class of serine-dependent proteases. IGF-II ligand blotting and surface plasmon resonance spectrometry have been used to identify plasminogen as a novel high affinity IGF-II-binding protein capable of binding to IGFBP-3 with 50-fold higher affinity than transferrin. In combination with transferrin, the overall binding constant of plasminogen/transferrin for IGF-II was reduced 7-fold. Size exclusion chromatography of the IGF-II matrix eluate revealed that transferrin, plasminogen, and the IGFBP-3 protease are present in different high molecular mass complexes of > or =440 kDa. The present data indicate that IGFs, low and high affinity IGFBPs, several IGFBP-associated proteins, and IGFBP proteases can interact, which may result in the formation of binary, ternary, and higher molecular weight complexes capable of modulating IGF binding properties and the stability of IGFBPs.  相似文献   

7.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) can stimulate apoptosis and inhibit cell proliferation directly and independently of binding IGFs or indirectly by forming complexes with IGF-I and IGF-II that prevent them from activating the IGF-I receptor to stimulate cell survival and proliferation. To date, IGF-independent actions only have been demonstrated in a limited number of cells that do not synthesize or respond to IGFs. To assess the general importance of IGF-independent mechanisms, we have generated human IGFBP-3 mutants that cannot bind IGF-I or IGF-II by substituting alanine for six residues in the proposed IGF binding site, Ile(56)/Tyr(57)/Arg(75)/Leu(77)/Leu(80)/Leu(81), and expressing the 6m-hIGFBP-3 mutant construct in Chinese hamster ovary cells. Binding of both IGF-I and IGF-II to 6m-hIGFBP-3 was reduced >80-fold. The nonbinding 6m-hIGFBP-3 mutant still was able to inhibit DNA synthesis in a mink lung epithelial cell line in which inhibition by wild-type hIGFBP-3 previously had been shown to be exclusively IGF-independent. 6m-hIGFBP-3 only can act by IGF-independent mechanisms since it is unable to form complexes with the IGFs that inhibit their action. We next compared the ability of wild-type and 6m-hIGFBP-3 to stimulate apoptosis in serum-deprived PC-3 human prostate cancer cells. PC-3 cells are known to synthesize and respond to IGF-II, so that IGFBP-3 could potentially act by either IGF-dependent or IGF-independent mechanisms. In fact, 6m-hIGFBP-3 stimulated PC-3 cell death and stimulated apoptosis-induced DNA fragmentation to the same extent and with the same concentration dependence as wild-type hIGFBP-3. These results indicate that IGF-independent mechanisms are major contributors to IGFBP-3-induced apoptosis in PC-3 cells and may play a wider role in the antiproliferative and antitumorigenic actions of IGFBP-3.  相似文献   

8.
9.
Insulin-like growth factor (IGF) signaling is critical for osteoblast development and IGF binding protein (IGFBP)-4 is one of the principle IGFBPs expressed by osteoblasts. Release of bound IGF via proteolytic degradation of IGFBP-4 is likely to be critical for osteoblast development. We have investigated whether IGF-sensitive, IGFBP-4 degradation in mouse MC3T3-E1 osteoblasts is due to the metzincin pregnancy-associated plasma protein (PAPP)-A. Degradation of IGFBP-4 by PAPP-A or MC3T3-E1 conditioned medium was enhanced by IGF-II but inhibited by mutation of basic residues at or near the PAPP-A cleavage site in IGFBP-4. Furthermore, immunodepletion of PAPP-A from MC3T3-E1 conditioned medium abolished IGFBP-4 degradation. We also found that PAPP-A messenger RNA was expressed throughout differentiation of MC3T3-E1 cells. These results demonstrate for the first time that PAPP-A is the IGFBP-4 protease in MC3T3-E1 cells, a widely used model for osteoblast development, and that PAPP-A may regulate IGF release throughout osteoblast differentiation.  相似文献   

10.
The Type-2 insulin-like growth factor receptor (IGF2R) mediates the transport of lysosomal hydrolases to lysosomes and the clearance of insulin-like growth factor II (IGF-II). Mutant mice lacking IGF2R usually die perinatally, but are completely rescued from lethality in the absence of IGF-II. IGF2R/IGF-II-deficient mice have elevated levels of circulating IGF binding protein (IGFBP)-3 and show a strong IGFBP-6 immunoreactivity in all pancreatic islet cells and in secretory granules of different size in acinar cells and interlobular connective tissue of exocrine pancreas. Fibroblasts derived from double mutant mice missort the lysosomal protease cathepsin D, and are able to degrade endocytosed (125I)IGFBP-3 intracellularly, however, with lower efficiency than in control cells. These results show that the deficiency of IGF2R and IGF-II affects the expression and metabolism of IGFBPs in a tissue- and cell type-specific manner.  相似文献   

11.
12.
In previous studies, we have shown that insulin-like growth factor II (IGF-II) stimulates basal as well as ACTH-induced cortisol secretion from bovine adrenocortical cells more potently than IGF-I [1]. The steroidogenic effect of both IGFs is mediated through interaction with the IGF-I receptor, and modified by locally produced IGF-binding proteins (IGFBPs). In the present study, we therefore characterized the IGFBPs secreted by bovine adrenocortical cells in primary culture, and investigated the effect of corticotropin (ACTH) and recombinant human IGF-I and IGF-II on the regulation of IGFBP synthesis. By Western ligand blotting, four different molecular forms of IGF-binding proteins were identified in conditioned medium of bovine adrenocortical cells with apparent molecular weights of 39-44 kDa, 34 kDA, 29-31 kDa, and 24 kDa. In accordance to their electrophoretic mobility, glycosylation status and binding affinity, these bands were identified by immunoprecipitation and immunoblotting as IGFBP-3, IGFBP-2, IGFBP-1, and deglycosilated IGFBP-4, respectively. Quantification of the specific bands by gamma counting revealed that, in unstimulated cells, IGFBP-3 accounts for approximately half of the detected IGFBP activity, followed by IGFBP-1, IGFBP-2 and IGFBP-4. ACTH treatment predominantly increased the abundance of IGFBP-1 and to a lesser extent IGFBP-3 in a time and dose-dependent fashion. In contrast, IGF-I or IGF-II (6.5 nM) preferentially induced the accumulation of IGFBP-3 (1.9-fold) and to a lesser extent of IGFBP-4, but did not show any effect on IGFBP-1. When ACTH and IGFs were combined, an additive stimulatory effect on the accumulation of IGFBP-3 and IGFBP-4 was observed. In contrast to their different steroidogenic potency, no significant difference in the stimulatory effect of IGF-I and IGF-II on IGFBP secretion was found. In conclusion, bovine adrenocortical cells synthesize IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-4, and their secretion is regulated differentially by ACTH and IGFs. These results, together with earlier findings, suggest that IGF-binding proteins play a modulatory role in the regulation of differentiated adrenocortical functions. Therefore, bovine adult adrenocortical cells provide a useful tissue culture model in which the complex interactions between two IGF-ligands, at least four IGF binding proteins and two IGF-receptors can be evaluated.  相似文献   

13.
Gyrup C  Oxvig C 《Biochemistry》2007,46(7):1972-1980
The metzincin metalloproteinase pregnancy-associated plasma protein-A (PAPP-A, pappalysin-1, EC 3.4.24.79) specifically cleaves insulin-like growth factor binding protein (IGFBP)-4 and -5. Regulation of insulin-like growth factor (IGF) bioavailability through cleavage of these inhibitory binding proteins is an important mechanism for the control of growth and development of vertebrate cells. Although proteolysis of IGFBP-4 and -5 by PAPP-A has been extensively studied in many systems, quantitative analyses have been lacking. We have characterized the cleavage of its natural substrates, IGFBP-4 and -5, in the absence and presence of IGF-I or -II and determined the kinetic parameters (Km and kcat) for the different combinations of IGFBP and IGF. The rate of IGFBP-4 proteolysis is dramatically increased upon addition of IGF-I or -II. Kinetic analysis revealed that IGF-II was a more potent activator of IGFBP-4 proteolysis than IGF-I. Proteolysis of IGFBP-5 is slightly inhibited by IGF, and we find that IGF-I and -II display a similar degree of inhibition of IGFBP-5 cleavage. We show that the mechanism of IGF-modulated proteolysis of IGFBP-4 and -5 involves changes in both the recognition of substrate (Km) and the turnover rate (kcat). In addition, we have devised a novel method of revealing potential consequences of substrate modification for kinetic analysis, and we have used this method to establish that there is no apparent difference in the behavior of radiolabeled IGFBP-4 and -5 compared to the behavior of the unmodified protein substrates. We also propose experimental conditions for the proper analysis of IGFBP proteolysis, and we demonstrate their usefulness by quantitatively evaluating the effect of inhibitory compounds on the rate of proteolysis. Finally, we have compared PAPP-A to other proteinases thought to have IGFBP-4 or -5 as a substrate. This emphasizes the potential of PAPP-A to specifically and efficiently function as a regulator in the IGF system.  相似文献   

14.
15.
In the circulation, most of the insulin-like growth factors (IGFs) are bound to a ternary 150 kDa complex with IGF-binding protein (IGFBP)-3 and the acid labile subunit. In the current study, we identify transferrin (Tf) by mass spectrometry, and immunoprecipitation as a component of a major IGF-binding fraction separated from human plasma. IGF ligand blotting, cross-linkage experiments and surface plasmon resonance spectrometry have been used to demonstrate the capability of Tf to bind IGFs specifically. In combination with Tf, IGFBP-3 showed a 5-fold higher affinity for IGF-II than IGFBP-3 alone. The data suggest that Tf may play an important role in regulating IGF/IGFBP-3 functions.  相似文献   

16.
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.  相似文献   

17.
We have previously shown that the insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of skeletal muscle cells in culture, and that these actions in L6A1 muscle cells may be modulated by three secreted IGF binding proteins (IGFBPs), IGFBP-4, -5, and -6. Since we found that the temporal expression pattern of IGFBP-4 and IGFBP-5 differed dramatically during the transition from proliferating myoblasts to differentiated myotubes, we undertook the current study to examine the effects of purified IGFBP-4 and IGFBP-5 on IGF- stimulated actions in L6A1 muscle cells. As has been shown for other cell types, we found that IGFBP-4 had only inhibitory actions, inhibiting IGF-I and IGF-II- stimulated proliferation and differentiation. In contrast, IGFBP-5 exhibited both inhibitory and stimulatory actions. When added in the presence of 30 ng/ml IGF-I, IGFBP-5 (250 ng/ml) inhibited all markers of the early proliferative response: the tyrosine phosphorylation of the cytoplasmic signaling molecules IRS-1 and Shc, the activation of the MAP kinases, ERK1 and 2, the elevation of c-fos mRNA, the early inhibition of the elevation in myogenin mRNA, and the increase in cell number. In contrast, IGFBP-5 stimulated all aspects of the myogenic response to IGF-I: the later rise in myogenin mRNA, the elevation of creatine kinase activity, and the fusion of myoblasts into myotubes. This dual response to IGFBP-5 was greatest when it was added at a molar ratio of IGFBP-5 to IGF-I of 2:1. In contrast, when IGFBP-5 was added in the presence of IGF-II, it inhibited both proliferation and differentiation. Neither IGFBP had any effect when added in the presence of R3 IGF-I, an analog with substantially reduced affinity for IGFBPs. Our results suggest that the role of IGFBP-4 is mainly to sequester excess IGFs, and thus inhibit all actions. IGFBP-5, however, is capable of eliciting a dual response, possibly due to its unique ability to associate with the cell membrane. J. Cell. Physiol. 177:47–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

19.
In the circulation, most of IGFs are bound to a high molecular mass complex of 150 kDa that consists of IGF-I (or IGF-II), IGFBP-3 and the acid-labile subunit (ALS). Within rat liver, biosynthesis of these components has been localized to different cell populations with hepatocytes as source of ALS and nonparenchymal cells (endothelial and Kupffer cells (KC)) as source of IGFBP-3. In the present study, the regulatory effects of the cAMP analogs dibutyryl-cAMP (db-cAMP) and 8-bromo-cAMP (8-br-cAMP) on IGF-I, ALS, and IGFBP expression were evaluated in primary cultures of rat hepatocytes, KC as well as in cocultures of hepatocytes and KC. In cocultures, biosynthesis of IGFBP-3 and ALS was inhibited dose-dependently by db-cAMP and 8-br-cAMP while that of IGF-I, IGFBP-1, and -4 was stimulated as demonstrated by ligand and Northern blotting. IGFBP-3 expression in primary cultures of pure KC did not respond to cAMP treatment indicating the importance of a cellular interaction between KC and hepatocytes for the decreased IGFBP-3 synthesis. The inhibition of IGFBP-3 in db-cAMP-treated cocultures was due to a decrease of IGFBP-3 mRNA level accompanied by a reduced cellular degradation of IGFBP-3. We conclude that cAMP stimulate the biosynthesis of IGF-I, IGFBP-1, and -4 in cocultures of hepatocytes and KC thereby enabling the formation of binary IGF/IGFBP complexes while the formation of the 150 kDa complex is impaired through downregulation of IGFBP-3 and ALS. This complex regulation may be a prerequisite for the effects of cAMP-dependent hormones on the transfer of IGFs from circulation to peripheral tissues.  相似文献   

20.
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号