首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our study aimed to analyze the effects of chronic nutrient loading on the capacity of headwater streams to retain phosphorus and ammonium pulses of different duration. For this purpose, we selected nine headwater streams located across a gradient of increasing agricultural land use and eutrophication. In each stream, we performed sequential plateau additions with increasing nutrient concentrations in summer 2015 and instantaneous slug additions in summer 2016 under similar hydrological conditions. We modelled kinetic uptake curves from the slug additions via the Tracer Additions for Spiraling Curve Characterization method and calculated ambient uptake parameters. Ambient uptake rates generally increased (1.4–20.8 µg m?2 s?1 for NH4–N and 0.3–10.3 µg m?2 s?1 for SRP, respectively), while ambient uptake velocities decreased from oligotrophic to polytrophic streams (1.8–14.0 mm min?1 for NH4–N and 1.6–9.9 mm min?1 for SRP, respectively). However, correlations between ambient uptake parameters and background concentrations were weak. Concentration-dependent uptake rates followed either a linear or a Michaelis–Menten saturation model, regardless of the degree of nutrient loading. Uptake rate curves showed counter-clockwise hysteresis in oligotrophic streams and clockwise hysteresis in streams of higher trophic states, indicating a reduced significance of hyporheic uptake with increasing nutrient loading. Comparisons of slug and plateau additions revealed that oligotrophic streams were most efficient in uptake during short nutrient pulses, while eutrophic streams profited from longer pulse duration. The results indicate that nutrient uptake is increasingly transport-controlled in polluted streams where increased biofilm thickness and clogging of sediments restrict nutrient transport to reactive sites.  相似文献   

2.
Whendee L. Silver 《Oecologia》1994,98(3-4):336-343
Data on soil nutrient availability for humid tropical forests are often reported, but are rarely integrated in an ecologically meaningful way with other measures of nutrient cycling. In this paper, estimates of soil nutrient availability and the inverse of litterfall nutrient concentrations (as an index of plant nutrient use) were compared, using data from 36 sites throughout the humid tropics, to determine if relationships exist between commonly used indices of nutrient cycling for plants and soils. Measures of both extractable and total soil P were significantly and positively correlated with the ratio of litterfall mass/P, particularly for montane tropical forests. Extractable soil P was also significantly correlated with litterfall mass for lowland humid tropical forests, explaining 58% of the variability in litterfall mass. A weak, albeit significant correlation was found between exchangeable soil Ca and litterfall mass/Ca, even though soil extraction techniques vary greatly. No significant relationship was found for total soil N, the most commonly measured soil N pool, and the inverse of litterfall N concentrations. The results suggest that our indices of soil P are related to litterfall processes, but that other measures, particularly total soil N, may not be as relevant to nutrient cycling by the vegetation.  相似文献   

3.
 Several nutrient–phytoplankton–zooplankton models with internal nutrient storage by phytoplankton are derived and analyzed. It is shown that there are thresholds beyond which the system is uniformly persistent. Variable-yield models with self-shading of phytoplankton are also considered. With respect to uniform persistence, our result demonstrates that the global dynamics of the system with shading are the same as those for which the self-shading mechanism is ignored. Received: 16 March 1999  相似文献   

4.
5.
Recently published annual mass balances or budgets for nitrogen, phosphorus, and silicon in Chesapeake Bay have pictured the estuary as retaining a very large fraction, perhaps all, of the nutrients that enter from land drainage, the atmosphere, and anthropogenic discharges. However, these budgets have been based on estimates of the net exchanges of nutrients at the mouth of the bay or on the rates of accumulation of nutrients and sediments calculated from the distributions of various geochemical tracers in the sediments. While conceptually straightforward, the first approach is subject to large errors because it requires the determination of a small "signal" against a large background of tidal "noise". The second approach has led to overestimates of the nutrient trapping efficiency of the bay because tracer-derived sediment deposition rates have been multiplied by the surface area of the whole bay or various parts of the bay rather than by the smaller area of active sediment deposition. This approach is also incorrect because the average, long-term rates of sediment deposition measured by the geochemical tracers, including major floods, have been compared to shorter-term records of nutrient input.The more appropriate calculation of nutrient retention based on contemporaneous measurements of nutrient and sediment input and the chemical compositon of sediments accumulated in the estuary shows that Chesapeake Bay retains only some 3–6% of the nitrogen, 11–17% of the phosphorus and 33–83% of the silicon brought into its waters during a year in which no major flood occurred.This behavior suggests that current problems of estuarine eutrophication are more a consequence of present nutrient inputs than an inevitable or inescapable legacy of past enrichment. It also follows that the management or manipulation of nutrient loadings to esturies may lead to a more rapid response in environmental quality than previously predicted.  相似文献   

6.
Phosphorus: a limiting nutrient for humanity?   总被引:2,自引:0,他引:2  
Highlights? P is essential to build key molecules, such as RNA needed for rapid growth. ? P is often limiting to productivity in ecosystems, including to crops. ? Large amounts of P are mined annually to make fertilizer to produce food. ? Current P use is unsustainable owing to ecosystem impacts and uncertainties about fertilizer production. ? A food system redesign to combine P-efficient crops with P recycling is needed.  相似文献   

7.
We present a minimal two-component model that can exhibit various types of spatial patterns including patchiness. The model, comprising nutrients and phytoplankton, includes the effect of nutrient uptake by phytoplankton as a Holling type II functional response, and also includes the effect of zooplankton grazing on phytoplankton as a Holling type II non-dynamical term. The mean-field model without the diffusion and advection terms shows both bistability and limit-cycle oscillations as a few parameters such as the input rate of nutrients and the maximum feeding rate of zooplankton are changed. If the parameter values are chosen from the limit-cycle oscillation region, the corresponding reaction-advection-diffusion equations show spatial pattern formations by the combined effects of advection and diffusion by turbulent stirring and mixing, and biological interactions. As the nutrient input is increased, the system behaviour changes from the extinction of the entire phytoplankton to the formation of filamentous patterns, patchiness patterns and homogeneous distributions. These observations suggest that the spatial pattern of phytoplankton can function as an indicator to evaluate the eutrophication level in aquatic ecosystems.  相似文献   

8.
R. Aerts  H. de Caluwe  B. Beltman 《Oikos》2003,101(3):489-498
Correlative studies have shown a ‘hump‐backed’ relation between the vegetation N:P ratio and plant species diversity with the highest diversity at balanced N:P ratios (between 10 and 14). We tested the hypothesis that adding growth‐limiting nutrients to mesotrophic grasslands that were in shortage of either N (N:P ratio<10) or P (N:P ratio>14) would lead to an increase of plant diversity. Thereto, we studied the effects of long‐term (11 yr) experimentally increased N and/or P supply on soil nutrient pools, vegetation nutrient dynamics and biodiversity in a riverine grassland in the Netherlands with a low soil N:P ratio (N shortage) and a peat grassland with a high soil N:P ratio (P shortage), respectively. Eleven years of nutrient addition hardly had any effects on the total stocks of C, N and P in the soils of both sites, due to the large size of the soil nutrient pools already present and to the management at both sites (annual hay‐making and ‐removal). However, in the riverine grassland the treatments increased the cycling of the small pool of labile N and P compounds resulting in large increases in annual fluxes of especially N. In the unfertilised controls, species establishments balanced more or less species losses during an 11 year period, thus leading to a dynamic equilibrium of the species pool. However, contrary to our hypothesis, addition of the growth‐limiting nutrient led at both sites to a reduction of species diversity even when total biomass remained below critical levels. Species diversity and species evenness were strongly determined by N mineralisation and to a lesser extent by total soil N and extractable P, respectively. Total aboveground biomass of the vegetation was determined by total soil N. Our study shows that patterns found in correlative studies of the relation between plant diversity and soil and vegetation N:P ratio can not be translated into successful experimental manipulations to enhance biodiversity. The most likely explanation is that colonization limitation occurred in the fertilized plots and that not sufficient diaspores of potentially new species could reach and/or colonize the plots to compensate for the species extinctions as a result of increased nutrient supply.  相似文献   

9.
Got silicon? The non-essential beneficial plant nutrient   总被引:16,自引:0,他引:16  
Research on a possible nutritional role for the element silicon has been hampered by the diverse beneficial effects that it has on monocots and dicots, and the subsequent difficulties in focusing studies on a single genetic model system. Although deemed a non-essential nutrient for the majority of plants, the benefits of silicon include increasing pest and pathogen resistance, drought and heavy metal tolerance, and the quality and yield of agricultural crops. Although the pathways and molecular mechanisms by which silicon is absorbed and deposited in plants are still unclear, recent progress has been achieved through the use of rice mutants that are deficient in silicon uptake. Additionally, the application of electron-energy-loss spectroscopy (EELS) allows one to determine the composition of silica deposits conclusively. Thereby shedding light upon the role of silicon in heavy metal tolerance. With the complete sequence of the genomes for a dicot (Arabidopsis) and a monocot (rice) available for large-scale genetic analysis, the future bodes well for a more complete understanding of the biological role of silicon and its mode of transport into and through plants.  相似文献   

10.
Enterococci were considered as not requiring iron. The aim of study was evaluation of relationship between enterococci and iron. This study examined these relationships in a 71 strains belonging to two species--Enterococcus faecalis and Enterococcus faecium, which are often isolated from human infections. The iron is an essential nutrient for enterococci. Demonstrated that iron--regardless of the concentration in the medium--is collected during growth. Iron deficiency in the nutrient medium resulted in changes in the kinetics of growth of enterococci. Inhibiting the growth of enterococci by iron chelators and lack of inhibition are further proof of this demand for iron bacteria. Enterococci have the ability to acquire this important element of its connections with natural and synthetic chetators with different strength of chemical bonding and structure. Bacteria of the genus Enterococcus have a natural resistance to many antimicrobial agents. In the hospital environment can easily acquire resistance genes to many other classes of antimicrobial compounds. For these reasons, treatment of enterococal infections poses more difficulties. Inhibition of iron uptake in enterococci can be helpful in reducing and combating enterococal infections.  相似文献   

11.
Dahlgren  Stefan  Kautsky  Lena 《Hydrobiologia》2004,514(1-3):249-258
Hydrobiologia - Two different vegetative states, i.e. one clear water state dominated by benthic macrophytes and one turbid state dominated by phytoplankton, are commonly found in shallow lakes. In...  相似文献   

12.
Central to the mutualistic arbuscular mycorrhizal symbiosis is the arbuscule, the site where symbiotic phosphate is delivered. Initial investigations in legumes have led to the exciting observation that symbiotic phosphate uptake not only enhances plant growth but also regulates arbuscule dynamics and is, furthermore, required for maintenance of the symbiosis. This review evaluates the possible role of the phosphate ion, not only as a nutrient but also as a signal that is necessary for reprogramming the host cortex cell for symbiosis.  相似文献   

13.
S. C. Castle  J. C. Neff 《Oecologia》2013,173(4):1551-1561
The importance of rock-derived mineral nutrients (P, K, Mn, Mg, and Ca) in plant physiological function is well established. However, one important and relatively unexplored question is whether or not the same rules of plant nutrient use efficiency apply to these essential elements even if they are not limiting to primary production. We examined conifer growth and nutrient use dynamics across sites with contrasting geologies (sedimentary and volcanic) that vary in both rock-derived mineral nutrient and N availability. Differences in bedrock geochemistry generally corresponded to differences in available soil nutrients, such that the volcanic site tended to have greater available nutrients. Foliar nutrient concentrations reflected both differences in bedrock chemistry and indices of available soil nutrients for P, K, and Mn. Aboveground biomass production did not follow expected patterns and was greater for trees growing on low nutrient sites, but only with respect to the annual woody increment. Fine litter production did not differ between sites. Finally, we found evidence for trade-offs between two commonly examined components of nutrient use efficiency (NUE): nutrient productivity (A n) and mean residence time of nutrients. However, we did not find evidence for higher plant NUE in soils with lower nutrient availability for N or rock-derived nutrients.  相似文献   

14.
1. Anthropogenic impacts on the biogeochemical cycles of nitrogen (N) and phosphorus (P) affect natural ecosystems worldwide. Modelling is required to predict where and when these key nutrients limit primary production in freshwaters. 2. We reviewed 382 nutrient‐enrichment experiments to examine which factors promote limitation of microphytobenthos biomass by N or P in streams and rivers. Using regression models, we examined whether the response of microphytobenthos biomass to N and P additions could be predicted by the absolute N and P concentrations in the water, the water N:P ratio or a combination of the two. 3. The absolute N concentration in the water was the best predictor of the magnitude of the response of microphytobenthos biomass to N additions. In comparison, the N:P ratio was the best predictor of whether or not N was limiting. However, predictions were uncertain except at extreme N:P ratios <1 : 1 and >100 : 1. 4. The absolute P concentration in the water was the best predictor of the magnitude of the response of microphytobenthos biomass to P additions. Neither the absolute nor the relative N and P concentrations predicted whether or not P was limiting. 5. The absolute and the relative N and P water concentrations contribute significant and complementary insights into the responses of microphytobenthos biomass to nutrient enrichment in running waters. However, ability to predict nutrient limitation from these concentrations is constrained by substantial error in the models. In the future, the prediction ability of models of nutrient limitation might be improved by focussing on regional scales and accounting for additional factors such as light and disturbance.  相似文献   

15.
Mayor  X.  Rodá  F. 《Plant Ecology》1992,(1):209-217
Correlations between primary production and patterns of nutrient use and nutrient availability were investigated in 18 plots in closed holm oak (Quercus ilex L.) stands in the Montseny mountains (NE Spain), searching for evidence of nutrient limitation on primary production. The plots spanned a range of altitudes and slope aspects within a catchment. Nutrients considered were nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg) in plant samples, and the above plus calcium (Ca) and sodium (Na) in the soil. Primary production was found by summing the annual aboveground biomass increment to the annual litterfall. Across plots, primary production was correlated with the annual return of nutrients in litterfall, but this relationship probably arose from the common effects of the amount of litterfall on both primary production and nutrient return, and not from any nutrient limitation. Primary production was not significantly correlated with nutrient concentrations in mature leaves nor leaf litterfall, nor with absolute or relative foliar retranslocation of nutrients before leaf abscission, nor with the concentration and content (kg/ha) of total N, extractable P, and exchangeable K, Mg, Ca and Na in the upper mineral soil. We conclude that there is no correlational evidence that primary production is nutrient limited in this holm oak forest.  相似文献   

16.
Ectomycorrhizal fungi may make a significant contribution to mineral weathering in temperate and boreal forests. It is important to know how this weathering activity will be affected by the changing nutrient demands of forests impacted by global change and nitrogen deposition. This review examines what is known about how plants sense and respond to nutrient demand and discusses the existing literature on ectomycorrhizal weathering in relation to plant nutrient demand. Plant physiology literature indicates that plants can respond to P limitation by allocating more carbon belowground and increasing root branching in areas of high P availability. Increased expression and upregulation of phosphorus and potassium uptake transporters has been observed under P- and K-limitation, respectively. There is evidence for a negative feedback between Mg- and K-deficiency and belowground carbon allocation. There are very few ectomycorrhizal weathering experiments that explicitly test how weathering activity responds to nutrient demand. Field studies suggest that hyphal colonization of readily available P sources does increase with increased P demand of the host. In microcosm studies there is indirect evidence that weathering activity may increase in response to P, K, or Mg demand. Recommendations are made for how future ectomycorrhizal research can better address this question. More research on how plants sense and respond to nutrient limitation, as well as genomic data from gymnosperms would also aid our understanding of this important aspect of forest ecology.  相似文献   

17.
18.
19.
How do plants respond to nutrient shortage by biomass allocation?   总被引:11,自引:0,他引:11  
Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.  相似文献   

20.
The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states.FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号