首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic matter (DOM) is considered as a major carbon source in subsoils. As soil water fluxes are highly variable at small scale, and transport versus sorptive retention of DOM is related to water flux and associated contact time with minerals, knowledge of the small scale spatial variability of the dissolved organic carbon (DOC) concentrations and fluxes into the subsoil is decisive for a solid estimation of organic carbon (OC) translocation into the subsoil. Here, we made advantage of novel segmented suction plates (4 × 4 segments, each 36 cm2) to analyze the small scale spatial and temporal variability of DOC transport at 10, 50 and 150 cm depth of three subsoil observatories (approximately 50 m apart) in a sandy Dystric Cambisol under beech in the Grinderwald, 40 km northwest from Hannover, Germany. Water fluxes, DOC concentrations and fluxes as well as the specific UV absorbance (SUVA) at 280 nm were determined in weekly samples from August 2014 to November 2015 for each individual segment. The DOC fluxes decreased with depth (19.6 g C m?2 year?1, 10 cm; 1.2 g C m?2 year?1, 150 cm) and were strongly related to the water fluxes. The SUVA at 280 nm also decreased with depth (0.03 L mg C?1 cm?1, 10 cm; 0.01 L mg C?1 cm?1, 150 cm), indicating a selective retention of aromatic moieties, that was eased with increasing water flux at least in the subsoil. The proportion of temporal fluctuations and small scale variability on the total variance of each parameter where determined by the calculation of intra class correlations. The seasonal heterogeneity and the small scale spatial heterogeneity were identified to be of major importance. The importance of the small scale spatial heterogeneity strongly increased with depth, pointing towards the stability of flow paths and suggesting that at a given substrate hydrological processes rather than physicochemical processes are decisive for the sorptive retention of DOM and the variability of OC accumulation in the subsoil. Our results clearly show the demand of small scale sampling for the identification of processes regarding carbon cycling in the subsoil.  相似文献   

2.
The amounts, sources and relative ages of inorganic and organic carbon pools were assessed in eight headwater streams draining watersheds dominated by either forest, pasture, cropland or urban development in the lower Chesapeake Bay region (Virginia, USA). Streams were sampled at baseflow conditions six different times over 1 year. The sources and ages of the carbon pools were characterized by isotopic (δ13C and ?14C) analyses and excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). The findings from this study showed that human land use may alter aquatic carbon cycling in three primary ways. First, human land use affects the sources and ages of DIC by controlling different rates of weathering and erosion. Relative to dissolved inorganic carbon (DIC) in forested streams which originated primarily from respiration of young, 14C-enriched organic matter (OM; δ13C = ?22.2 ± 3 ‰; ?14C = 69 ± 14 ‰), DIC in urbanized streams was influenced more by sedimentary carbonate weathering (δ13C = ?12.4 ± 1 ‰; ?14C = ?270 ± 37 ‰) and one of pasture streams showed a greater influence from young soil carbonates (δ13C = ?5.7 ± 2.5 ‰; ?14C = 69 ‰). Second, human land use alters the proportions of terrestrial versus autochthonous/microbial sources of stream water OM. Fluorescence properties of dissolved OM (DOM) and the C:N of particulate OM (POM) suggested that streams draining human-altered watersheds contained greater relative contributions of DOM and POM from autochthonous/microbial sources than forested streams. Third, human land uses can mobilize geologically aged inorganic carbon and enable its participation in contemporary carbon cycling. Aged DOM (?14C = ?248 to ?202 ‰, equivalent14C ages of 1,811–2,284 years BP) and POM (?14C = ?90 to ?88 ‰, 14C ages of 669–887 years BP) were observed exclusively in urbanized streams, presumably a result of autotrophic fixation of aged DIC (?297 to ?244 ‰, 14C age = 2,251–2,833 years BP) from sedimentary shell dissolution and perhaps also watershed export of fossil fuel carbon. This study demonstrates that human land use may have significant impacts on the amounts, sources, ages and cycling of carbon in headwater streams and their associated watersheds.  相似文献   

3.
To elucidate the molecular characteristics of dissolved organic matter (DOM) in Lake Baikal, 3D excitation-emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were employed. From the linear relationship between the humic-like peak intensities (excitation/emission = 305 nm/430 nm) and dissolved organic carbon (DOC) concentrations in the water samples extending from the Selenga River mouth to offshore (central lake in the south basin), allochthonous DOM appeared to be a main contributor to the DOC concentrations. However, DOM with fewer fluorophores dominated in the South Basin of the lake at stable DOC concentrations of ca. 0.84 mg C l?1. Meanwhile, FT-ICR MS analysis and subsequent principal component analysis across the transect revealed a transition of compounds with high H-deficiency (aromatic) to compounds with low H-deficiency (aliphatic) that dominate pelagic open-lake water. We believe that this molecular change is induced by photo-degradation, which mainly alters aromatic compounds.  相似文献   

4.
Organic matter release by scleractinian corals fulfils an important ecological role as energy carrier and particle trap in reef ecosystems, but the hypothetically stimulating impact of water currents, an essential and ubiquitous environmental factor in coral reefs, on this process has not been investigated yet. This study therefore quantifies organic matter release by two species of scleractinian corals subjected to ambient water current velocities ranging from 4 to 16?cm?s?1 using closed-system flow-through chambers. Findings revealed that particulate organic matter (POM) concentration was significantly increased in the flow-through chambers in all investigated coral species compared to still water conditions, while no effect on dissolved organic carbon (DOC) concentration could be observed. These results suggest that POM release by corals may be controlled by hydro-mechanical impacts, while DOC fluxes are rather influenced by the physiological condition of the corals. Hence, this study indicates that previous POM release quantification results are conservative estimates and may have underestimated in situ POM release through corals in reef environments. The contribution of coral-derived POM to biogeochemical cycles in reef ecosystems, therefore, may be more pronounced than already assumed.  相似文献   

5.
Monitoring data over the period 1994–2007 were analysed for three streams (Cottage Hill Sike, CHS; Rough Sike, RS; Trout Beck, TB) draining blanket peat underlain by glacial clay and limestone-rich sub-strata at Moor House (Northern England). Dissolved organic carbon concentration, [DOC], showed complex relationships with both discharge and calcium concentration, [Ca]. A model based on [Ca] was constructed to simulate stream [DOC] by mixing dissolved organic matter (DOM) from shallow peat, quantified by measured [DOC] (15–30 mg l?1) in peat porewater, with DOM assumed to be present at a constant concentration (c. 5 mg l?1) in groundwater. A temperature-based adjustment to the measured porewater [DOC] was required to account for relatively low streamwater [DOC] during winter and spring. The fitted model reproduced short-term variation in streamwater [DOC] satisfactorily, in particular variability in RS and TB due to groundwater contributions. Streamwater DOM is largely derived from surface peat, which accounts for more than 96% of the total DOC flux in both RS and TB, and 100% in CHS. Model outputs were combined with streamwater and porewater DO14C data to estimate the 14C contents, and thereby the ages, of DOM from peat and groundwater. The peat-derived DOM is 5 years old on average, with most of it very recently formed. The derived age of groundwater DOM (8,500 years) is comparable to the 4,000–7,000 years estimated from the DO14C of water extracts of clay underlying the peat, suggesting that the clay is the source of groundwater DOM.  相似文献   

6.
The impact of human activities on the concentrations and composition of dissolved organic matter (DOM) and particulate organic matter (POM) was investigated in the Walloon Region of the Meuse River basin (Belgium). Water samples were collected at different hydrological periods along a gradient of human disturbance (50 sampling sites ranging from 8.0 to 20,407 km2) and during a 1.5 year monitoring of the Meuse River at the city of Liège. This dataset was completed by the characterization of the DOM pool in groundwaters. The composition of DOM and POM was investigated through elemental (C:N ratios), isotopic (δ13C) and optical measurements including excitation emission matrix fluorescence with parallel factor analysis (EEM–PARAFAC). Land use was a major driver on fluvial OM composition at the regional scale of the Meuse Basin, the composition of both fluvial DOM and POM pools showing a shift toward a more microbial/algal and less plant/soil-derived character as human disturbance increased. The comparison of DOM composition between surface and groundwaters demonstrated that this pattern can be attributed in part to the transformation of terrestrial sources by agricultural practices that promote the decomposition of soil organic matter in agricultural lands and subsequent microbial inputs in terrestrial sources. In parallel, human land had contrasting effects on the autochthonous production of DOM and POM. While the in-stream generation of fresh DOM through biological activity was promoted in urban areas, summer autochthonous POM production was not influenced by land use. Finally, soil erosion by agricultural management practices favored the transfer of terrestrial organic matter via the particulate phase. Stable isotope data suggest that the hydrological transfer of terrestrial DOM and POM in human-impacted catchment are not subject to the same controls, and that physical exchange between these two pools of organic matter is limited.  相似文献   

7.
Incubation experiments were performed to examine the processing of fresh autochthonous dissolved organic matter (DOM) produced by coastal plankton communities in spring and autumn. The major driver of observed DOM dynamics was the seasonally variable inorganic nutrient status and characteristics of the initial bulk DOM, whereas the characteristics of the phytoplankton community seemed to have a minor role. Net accumulation of dissolved organic carbon (DOC) during the 18-days experiments was 3.4 and 9.2 µmol l?1 d?1 in P-limited spring and N-limited autumn, respectively. Bacterial bioassays revealed that the phytoplankton-derived DOC had surprisingly low proportions of biologically labile DOC, 12.6% (spring) and 17.5% (autumn). The optical characteristics of the DOM changed throughout the experiments, demonstrating continuous heterotrophic processing of the DOM pool. However, these temporal changes in optical characteristics of the DOM pool were not the same between seasons, indicating seasonally variable environmental drivers. Nitrogen and phosphorus availability is likely the main driver of these seasonal differences, affecting both phytoplankton extracellular release of DOM and its heterotrophic degradation by bacteria. These findings underline the complexity of the DOM production and consumption by the natural planktonic community, and show the importance of the prevailing environmental conditions regulating the DOM pathways.  相似文献   

8.
Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m?2 year?1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m?2 year?1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m?2 year?1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m?2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.  相似文献   

9.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

10.
Because of low net production in arctic and subarctic surface water, dissolved organic matter (DOM) discharged from terrestrial settings plays an important role for carbon and nitrogen dynamics in arctic aquatic systems. Sorption, typically controlling the export of DOM from soil, may be influenced by the permafrost regime. To confirm the potential sorptive control on the release of DOM from permafrost soils in central northern Siberia, we examined the sorption of DOM by mineral soils of Gelisols and Inceptisols with varying depth of the active layer. Water‐soluble organic matter in the O horizons of the Gelisols was less (338 and 407 mg C kg?1) and comprised more dissolved organic carbon (DOC) in the hydrophobic fraction (HoDOC) (63% and 70%) than in the O horizons of the Inceptisols (686 and 706 mg C kg?1, 45% and 48% HoDOC). All A and B horizons from Gelisols sorbed DOC strongly, with a preference for HoDOC. Almost all horizons of the Inceptisols showed a weaker sorption of DOC than those of the Gelisols. The C horizons of the Inceptisols, having a weak overall DOC sorption, sorbed C in the hydrophilic fraction (HiDOC) stronger than HoDOC. The reason for the poor overall sorption and also the preferential sorption of HiDOC is likely the high pH (pH>7.0) of the C horizons and the smaller concentrations of iron oxides. For all soils, the sorption of HoDOC related positively to oxalate‐ and dithionite–citrate‐extractable iron. The A horizons released large amounts of DOC with 46–80% of HiDOC. The released DOC was significantly (r=0.78, P<0.05) correlated with the contents of soil organic carbon. From these results, we assume that large concentrations of DOM comprising large shares of HiDOC can pass mineral soils where the active layer is thin (i.e. in Gelisols), and enter streams. Soils with deep active layer (i.e. Inceptisols), may release little DOM because of more frequent infiltration of DOM into their thick mineral horizons despite their smaller contents of reactive, poorly crystalline minerals. The results obtained for the Inceptisols are in agreement with the situation observed for streams connecting to Yenisei at lower latitudes than 65°50′ with continuous to discontinuous permafrost. The smaller sorption of DOM by the Gelisols is in agreement with the larger DOM concentrations in more northern catchments. However, the Gelisols preferentially retained the HoDOC which dominates the DOC in streams towards north. This discrepancy can be explained by additional seepage water from the organic horizons that is discharged into streams without intensive contact with the mineral soil.  相似文献   

11.
Transparent exopolymer particles (TEP) compose an important pool of particulate organic matter (POM) in aquatic systems. However, no studies of TEP contribution to C export to sediment exist for freshwaters. We quantify the contribution of TEP to C sinking fluxes in an oligotrophic reservoir (Quéntar, Southern Spain) by monitoring TEP in the water column and TEP, particulate organic carbon (POC) and dry weight in sedimentation traps. TEP sinking fluxes ranged from 0.73 to 183.23 mg C m?2 day?1 and from 0.51 to 177.04 mg C m?2 day?1 at the surface and at the bottom layer, respectively. These values represent that, over an annual basis, 5.59 Ton TEP-C (over 61.32 Ton POC) are exported, on an average, from the water column to the sediment of Quentar reservoir. TEP concentrations (average = 48.0 μg XG eq l?1) were lower than the scarce data reported for freshwaters. No significant relationships between TEP and Chl a concentrations or BA were observed. Average value for daily sedimentation flux (6.63 g Dry Weight m?2 day?1) in the study reservoir was higher than that documented for low productive natural aquatic ecosystems as a consequence of the high amount of allochthonous material input characterizing reservoirs. TEP contributed to C export to sediment with a value that range from 0.02 to 31%. Our results show that even in man-made systems, which are predominantly controlled by allochthonous inputs, TEP may be relevant for explaining POM settling fluxes.  相似文献   

12.
Dissolved organic matter (DOM) concentrations in a fringing coral reef were measured for both carbon and nitrogen with the analytical technique of high-temperature catalytic oxidation. Because of high precision of the analytical system, not only the concentrations of dissolved organic carbon and nitrogen (DOC and DON, respectively) but the C:N ratio was also determined from the distribution of DOC and DON concentrations. The observed concentrations of DOC and DON ranged 57–76 and 3.8–5.6 μmol l−1, respectively. The C:N ratios of the DOM that was produced on the reef flat were very similar between seagrass- and coral-dominated areas; the C:N ratio was 10 on average. The C:N ratio of DOM was significantly higher than that of particulate organic matter (POM) that was produced on the reef flat. Production rates of DOC were measured on the reef flat during stagnant periods and accounted for 3–7% of the net primary production, depending on the sampling site. The production rate of DON was estimated to be 10–30% of the net uptake of dissolved inorganic N in the reef community. Considering that the DOM and POM concentrations were not correlated with each other, a major source of the reef-derived DOM may be the benthic community and not POM such as phytoplankton. It was concluded that a widely distributed benthic community in the coral reef released C-rich DOM to the overlying seawater, conserving N in the community.  相似文献   

13.
Leaf litter plays a critical role in regulating ecological functions in headwater forest streams, whereas the effects of leaves on water quality in urbanized streams are not fully understood. This study examined the potential importance of leaf litter for the release and transformations of organic carbon and nutrients in urban streams, and compared the effects with other types of natural organic substrates (periphyton and stream sediment). Nutrients and organic carbon were leached from senescent leaves of 6 tree species in the laboratory with deionized water, and maximal releases, leaching rate constants, composition and bioavailability of the leached dissolved organic carbon (DOC) were determined. Stream substrates (leaf debris, rocks with periphyton, and sediment) were seasonally collected from urban and forest reference streams of the NSF Baltimore Long-term Ecological Research Site and incubated with overlying stream water to estimate areal fluxes of DOC and nitrogen. Leaf litter leaching showed large ranges in maximal releases of DOC (7.0–131 mg g?1), dissolved organic nitrogen (DON; 0.07–1.39 mg g?1) and total dissolved phosphorus (TDP; 0.14–0.70 mg g?1) among tree species. DOC leaching rate constants, carbon to nitrogen ratios, and DOC bioavailability were all correlated with organic matter quality indicated by fluorescence spectroscopy. Results from substrate incubation experiments showed far higher DOC and DON release and nitrate retention with leaf debris than with sediment, or rocks with periphyton. DOC release from leaf debris was positively correlated with stream nitrate retention at residential and urban sites, with the highest values observed during the fall and lowest during the summer. This study suggests the potential importance of leaf litter quantity and quality on fostering DOC and nutrient release and transformations in urban streams. It also suggests that species-specific impacts of leaves should be considered in riparian buffer and stream restoration strategies.  相似文献   

14.
Climatic warming will probably have particularly large impacts on carbon fluxes in high altitude and latitude ecosystems due to their great stocks of labile soil C and high temperature sensitivity. At the alpine treeline, we experimentally warmed undisturbed soils by 4 K for one growing season with heating cables at the soil surface and measured the response of net C uptake by plants, of soil respiration, and of leaching of dissolved organic carbon (DOC). Soil warming increased soil CO2 effluxes instantaneously and throughout the whole vegetation period (+45%; +120 g C m y?1). In contrast, DOC leaching showed a negligible response of a 5% increase (NS). Annual C uptake of new shoots was not significantly affected by elevated soil temperatures, with a 17, 12, and 14% increase for larch, pine, and dwarf shrubs, respectively, resulting in an overall increase in net C uptake by plants of 20–40 g C m?2y?1. The Q 10 of 3.0 measured for soil respiration did not change compared to a 3-year period before the warming treatment started, suggesting little impact of warming-induced lower soil moisture (?15% relative decrease) or increased soil C losses. The fraction of recent plant-derived C in soil respired CO2 from warmed soils was smaller than that from control soils (25 vs. 40% of total C respired), which implies that the warming-induced increase in soil CO2 efflux resulted mainly from mineralization of older SOM rather than from stimulated root respiration. In summary, one season of 4 K soil warming, representative of hot years, led to C losses from the studied alpine treeline ecosystem by increasing SOM decomposition more than C gains through plant growth.  相似文献   

15.
Benthic organic matter dynamics in Texas prairie streams   总被引:1,自引:1,他引:0  
Concentrations of benthic particulate organic matter (POM) in six Texas prairie streams (2nd–4th order, intermittent and perennial) were monitored over a 20 month period to determine temporal and spatial dynamics. Benthic POM mass was highly variable, having coefficients of variation (CV) in excess of 300%. Benthic POM mass in all streams was similar with the exception of the 4th order intermittent stream which had significantly higher concentrations. Benthic POM at all sites was dominated by coarse POM (CPOM), followed by fine POM (FPOM), ultrafine POM (UPOM), and medium POM (MPOM). The dominance by CPOM is especially noteworthy in the 4th order intermittent stream where it accounted for 83% of the annual POM mass. Seasonally, benthic POM was highest in summer and lowest in the fall.  相似文献   

16.
17.
This study compares the organic chemistry of peat beneath one of last remaining pristine tropical peat forests in Southeast Asia with a neighbouring peat dome that has been deforested, but not intentionally drained, in the Belait district of Brunei Darussalam, Borneo. We characterized the solid and dissolved organic matter collected from the two domes, through a combination of methods including elemental analysis, phenolic content and Fourier transform infrared spectroscopy (FTIR) investigation of solid peat, as well as optical characterisation (absorbance, fluorescence) of dissolved organic matter (DOM). The peat had a high content of lignin, consistent with its origin from the Shorea albida trees on the domes. Dissolved organic carbon (DOC) concentration in the pore water was significantly greater in the deforested site (79.9 ± 5.5 mg l?1) than the pristine site (62.2 ± 2.2 mg l?1). The dissolved organic matter was richer in nitrogen and phenolics in the deforested site. The optical properties (Fluorescence Index) indicated a modification of DOM cycling in the deforested site (enhanced decomposition of the peat and fresh litter). Comparison of the solid peat composition between the two sites also suggests effects of deforestation: sulphur, nitrogen and phenolic contents were higher in the deforested site. Taken together, these observations are consistent with peat enhanced decomposition in the deforested site, even without engineered drainage.  相似文献   

18.
1. We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. 2. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were sampled from wells in a riparian terrace on the Queets River, Washington, U.S.A. on 25 March, 15 May, 20 July and 09 October 1999. Dissolved nitrate, ammonium and soluble reactive phosphorus were also collected on 20 July and 09 October 1999. Wells were characterised by their associated overlying vegetation: bare cobble/young alder, mid‐aged alder (8–20 years) and old alder/old‐growth conifer (25 to >100 years). POM was analysed for the ash‐free dry mass and the activities of eight exoenzymes (α‐glucosidase, β‐glucosidase, β ‐N‐acetylglucosaminidase, xylosidase, phosphatase, leucine aminopeptidase, esterase and endopeptidase) using fluorogenic substrates. 3. Exoenzyme activities in the Queets River hyporheic zone indicated the presence of an active microbial community metabolising a diverse array of organic molecules. Individual exoenzyme activity (mean ± standard error) ranged from 0.507 ± 0.1547 to 22.8 ± 5.69 μmol MUF (g AFDM)?1 h?1, was highly variable among wells and varied seasonally, with the lowest rates occurring in March. Exoenzyme activities were weakly correlated with DO, DOC and inorganic nutrient concentrations. 4. Ratios of leucine aminopeptidase : β‐glucosidase were low in March, May and October and high in July, potentially indicating a switch from polysaccharides to proteins as the dominant component of microbial metabolism. 5. Principal components analysis indicated that there were patch effects and that these effects were strongest in the summer. 6. DOM degradation patterns did not change systematically along hyporheic flowpaths but varied with overlying forest patch type in the Queets River hyporheic zone, suggesting that additional carbon inputs exist. We hypothesise that the most likely input is the downward movement of DOM from overlying riparian soils. Understanding this movement of DOM from soils to subsurface water is essential for understanding both the hyporheic metabolism and the carbon budget of streams and rivers.  相似文献   

19.
土壤可溶性有机质(DOM)及其组分淋失特征研究对深入理解干扰作用下土壤碳氮养分损失机制具有重要意义,本研究基于翻耕模拟试验,分析喀斯特石灰土可溶性有机碳(DOC)、可溶性有机氮(DON)、及DOM官能团组分的淋失动态特征及其对不同耕作频率的响应,并探讨其影响因子。结果表明:(1)土壤DOC与DON的淋失量均随翻耕频率的增加而增加,但4个官能团特征参数对翻耕频率响应均不显著;DOC/DON淋失比随翻耕频率的增大而减少,DON占淋溶水可溶性总氮(TDN)比例随翻耕频率增加而增加。(2)DOC和DON月淋失量同时受翻耕处理与季节变化及其交互作用的影响,4个官能团特征参数仅受季节变化的影响;翻耕处理实施后,DOC月淋失量表现为初期大、后期小,各处理间差异性逐渐降低;但DON月淋失量初期小、后期大,各处理间差异性逐渐增大。(3)DOC淋失量与4个官能团特征参数呈显著负相关(P0.05),与Ca~(2+)、NH_4~+-N的淋失量呈显著正相关;DON淋失量与4个官能团参数无显著相关关系,与Mg~(2+)淋失量呈显著正相关关系。以上结果表明耕作扰动会加剧土壤DOM淋失,但淋失组分中稳定性组分没有变化,意味着耕作干扰将导致土壤有机质的持续损失,且由于其淋失组分碳氮比(DOC/DON)随扰动频率增加而降低,DON/TDN比随扰动频率增加而增加,持续的耕作干扰将大大增加水体氮素污染风险。  相似文献   

20.
Production and bioavailability of dissolved organic matter (DOM) were followed during a year in the nutrient-rich estuary, Roskilde Fjord (RF), and the more oligotrophic strait, Great Belt (GB), in Denmark. Bioavailability of dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP) was determined during incubations over six months. Overall, RF had three to five times larger pools of total nitrogen (TN) and total phosphorous (TP) and five to eight times higher concentrations of inorganic nutrients compared to GB. However, the allocation of carbon, nitrogen, and phosphorous into different pools were remarkably similar between the two systems. DON and DOP contributed with about equal relative fractions in the two systems: 72 ± 13% of total nitrogen and 21 ± 12% of total phosphorous. The average bioavailability of DOM was 25 ± 15, 17 ± 5.5, and 49 ± 29% for carbon, nitrogen, and phosphorous, respectively. The observed release of DIN from degradation of DON amounted to between 0.1 (RF winter) and 14 times (GB summer) the loadings from land and contributed with half of the total input of bioavailable nitrogen during summer. Hence, this study shows that nitrogen in DOM is important for the nitrogen cycling, especially during summer. The sum of inorganic nutrients, particulate organic matter, and bioavailable DOM (the dynamic pools of nutrients) accounted for 42 and 92% of nitrogen, and phosphorous, respectively, and was remarkably similar between the two systems compared to the difference in nutrient richness. It is hypothesized that the pelagic metabolism of nutrients in marine systems dictates a rather uniform distribution of the different fractions of nitrogen and phosphorous containing compounds regardless of eutrophication level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号