首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The important role of soil carbon (C) in the global C cycle has stimulated interest in better understanding the mechanisms regulating soil C storage and its stabilization. Exotic earthworm invasion of northern forest soils in North America can affect soil C pools, and we examined their effects on these mechanisms by adding 13C labeled leaf litter to adjacent northern hardwood forests with and without earthworms. Two types of labeled litter were produced, one with the 13C more concentrated in structural (S) components and the other in non-structural (NS) components, to evaluate the role of biochemical differences in soil C stabilization. Earthworm invasions have reduced soil C storage in the upper 20 cm of the soil profile by 37 %, mostly by eliminating surface organic horizons. Despite rapid mixing of litter into mineral soil and its incorporation into aggregates, mineral soil C has not increased in the presence of earthworms. Incorporation of litter C into soil and microbial biomass was not affected by biochemical differences between S versus NS labeled litter although NS litter C was assimilated more readily into earthworm biomass and S litter C into fungal hyphae. Apparently, the net effect of earthworm mixing of litter and forest floor C into mineral soil, plus stabilization of that C in aggregates, is counterbalanced by earthworm bioturbation and possible priming effects. Our results support recent arguments that biochemical recalcitrance is not a major contributor to the stabilization of soil C.  相似文献   

4.
5.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

6.
Phenology of a northern hardwood forest canopy   总被引:4,自引:0,他引:4  
While commonplace in other parts of the world, long‐term and ongoing observations of the phenology of native tree species are rare in North America. We use 14 years of field survey data from the Hubbard Brook Experimental Forest to fit simple models of canopy phenology for three northern hardwood species, sugar maple (Acer saccharum), American beech (Fagus grandifolia), and yellow birch (Betula alleghaniensis). These models are then run with historical meteorological data to investigate potential climate change effects on phenology. Development and senescence are quantified using an index that ranges from 0 (dormant, no leaves) to 4 (full, green canopy). Sugar maple is the first species to leaf out in the spring, whereas American beech is the last species to drop its leaves in the fall. Across an elevational range from 250 to 825 m ASL, the onset of spring is delayed by 2.7±0.4 days for every 100 m increase in elevation, which is in reasonable agreement with Hopkin's law. More than 90% of the variation in spring canopy development, and just slightly less than 90% of the variation in autumn canopy senescence, is accounted for by a logistic model based on accumulated degree‐days. However, degree‐day based models fit to Hubbard Brook data appear to overestimate the rate at which spring development occurs at the more southerly Harvard Forest. Autumn senescence at the Harvard Forest can be predicted with reasonable accuracy in sugar maple but not American beech. Retrospective modeling using five decades (1957–2004) of Hubbard Brook daily mean temperature data suggests significant trends (P≤0.05) towards an earlier spring (e.g. sugar maple, rate of change=0.18 days earlier/yr), consistent with other studies documenting measurable climate change effects on the onset of spring in both North America and Europe. Our results also suggest that green canopy duration has increased by about 10 days (e.g. sugar maple, rate of change=0.21 days longer/yr) over the period of study.  相似文献   

7.
Stemflow nutrient inputs to soil in a successional hardwood forest   总被引:10,自引:0,他引:10  
Stemflow and throughfall from a regenerating (8-year-old) southern Appalachian hardwood forest were collected to examine the relative importance of tree bole nutrient leaching in response to acid deposition. Samples from nine (2 m2) stemflow collection plots were analyzed for four dormant season and 11 growing season rainstorm events. Results showed that, relative to throughfall fluxes, stemflow accounted, on average, for approximately 8.5% of total water reaching the forest floor during both dormant and growing season storms. Relative to foliar leaching, K-, SO4-, and PO4 ions appear to be the most easily leached ions from young tree stems. Proportional nitrate and base cation stemflow fluxes increased significantly (p<0.05) with growing-season storm-event duration, suggesting that the stemsurface nutrient pool is depleted by precipitation more slowly than the foliar pool. On average, proportional stemflow fluxes of SO4 (12%) and K (14%) were consistently higher than reported maximum values for more mature forest stands, which indicates that small-scale stemflow inputs of ions such as these to the forest floor may be important in early successional ecosystems.  相似文献   

8.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

9.
Climate change will likelyresult in warmer winter temperatures leading toless snowfall in temperate forests. Thesechanges may lead to increases in soil freezingbecause of lack of an insulating snow cover andchanges in soil water dynamics during theimportant snowmelt period. In this study, wemanipulated snow depth by removing snow for twowinters, simulating the late development of thesnowpack as may occur with global warming, toexplore the relationships between snow depth,soil freezing, soil moisture, and infiltration.We established four sites, each with two pairedplots, at the Hubbard Brook Experimental Forest(HBEF) in New Hampshire, U.S.A. and instrumentedall eight plots with soil and snow thermistors,frost tubes, soil moisture probes, and soillysimeters. For two winters, we removed snowfrom the designated treatment plots untilFebruary. Snow in the reference plots wasundisturbed. The treatment winters (1997/1998 and1998/1999) were relatively mild, withtemperatures above the seasonal norm and snowdepths below average. Results show the treatedplots accumulated significantly less snow andhad more extensive soil frost than referenceplots. Snow depth was a strong regulator ofsoil temperature and frost depth at all sites.Soil moisture measured by time domainreflectometry probes and leaching volumescollected in lysimeters were lower in thetreatment plots in March and April compared tothe rest of the year. The ratio of leachatevolumes collected in the treatment plots tothat in the reference plots decreased as thesnow ablation seasons progressed. Our data showthat even mild winters with low snowfall,simulated by snow removal, will result inincreased soil freezing in the forests at theHBEF. Our results suggest that a climate shifttoward less snowfall or a shorter duration ofsnow on the ground will produce increases insoil freezing in northern hardwood forests.Increases in soil freezing will haveimplications for changes in soil biogeochemicalprocesses.  相似文献   

10.
Phosphorus budget of a 70-year-old northern hardwood forest   总被引:3,自引:2,他引:3  
Recent measurements have made it possible to revise and improve the phosphorus budget of the Hubbard Brook Experimental Forest, including partitioning P uptake by vegetation from the forest floor and mineral soil and estimating net P mineralization in the forest floor. Both living biomass and forest floor are accumlating P (at rates of 1.3 and 0.16 kg P ha-1 yr-1 respectively) in this 70-yr old northern hardwood forest. About 61% of the P taken up by the vegetation each year comes from the forest floor (5.9 kg P ha-1 yr-1 of a total 9.6 kg P ha-1 yr-1), even though the P content of this pool is just 5% of that in mineral soil. The turnover rate of P in the forest floor is 7% yr-1, while that of the mineral soil is 0.3% yr-1. Recycling of P in the forest floor is very efficient; of the 5.6 kg P ha-1 yr-1 net mineralization in the forest floor, only 0.3 kg P ha-1 leaches into the mineral soil; the rest is taken up by plants. This tight recycling of P is important because P is less readily available in the mineral soil than in the forest floor.  相似文献   

11.
Iron (Fe) is ubiquitous in forest ecosystems and its cycle is thought to influence the development of soil, particularly Spodosols (podsolization), and the biogeochemistry of macronutrients such as carbon (C), nitrogen (N), and phosphorus (P), as well as many trace metals. The cycle of Fe in northern hardwood forests remains poorly understood. To address some of these uncertainties, we constructed a biogeochemical budget of Fe for a small catchment at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA. Horizonal, temporal, and elevational patterns of concentrations and fluxes of oxidized and reduced Fe species were assessed in leaf litter, soil, soil solution, and stream water. The chemistry of dissolved Fe was evaluated in the context of its relationship with dissolved organic carbon, pH, and dissolved oxygen. Soil solution fluxes of Fe were highest in the organic (Oa, 52.5 mol ha?1 year?1) horizon and decreased with depth in the mineral (Bh, 50.5 mol ha?1 year?1, and Bs, 19.7 mol ha?1 year?1) horizons, consistent with podsolization theories predicting immobilization of Fe following downward transport to mineral soils. The export of Fe in stream water (1.8 mol ha?1 year?1) was lower than precipitation input (3.5 mol ha?1 year?1). The low stream flux indicates most Fe in drainage waters was immobilized in the soil and retained in the watershed. The portion of total Fe as Fe(II) was ~10?C60% in soil solutions, seemingly high for soils that are considered to be well-drained, oxidizing environments. Organic complexes likely stabilized Fe(II) in solution under oxidizing conditions that would otherwise promote considerably higher Fe(III)-to-Fe(II) ratios. Our study indicates that there are organic matter-derived sources of dissolved Fe(II) as well as substantial mobilization of Fe(II), possibly the result of the reduction of Fe-bearing soil minerals.  相似文献   

12.
Understanding the factors regulating the concentrations of basic cations in soils and surface waters is critical if rates of recovery are to be predicted in response to decreases in acidic deposition. Using a dynamic simulation model (PnET-BGC), we evaluated the extent to which atmospheric deposition of strong acids and associated leaching by strong anions, atmospheric deposition of basic cations through changes in emissions of particulate matter, and historical forest cutting have influenced soil pools of exchangeable basic cations and the acid-base status of stream water at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire. Historical deposition of basic cations was reconstructed from regression relationships with particulate matter emissions. Simulation results indicate that the combination of these factors has resulted in changes in the percent soil base saturation, and stream pH and acid neutralizing capacity (ANC) from pre-industrial estimates of 20%, 6.3 and 45 eq L–1, respectively, to current values of 10%, 5.0 and –5 eq L–1, respectively. These current values fall within the critical thresholds at which forest vegetation and aquatic biotic are at risk from soil and surface water acidification due to acidic deposition. While the deposition of strong acid anions had the largest impact on the acid-base status of soil and stream water, the reduction in deposition of basic cations associated with reductions in particulate emissions was estimated to have contributed about 27% of the depletion in soil Ca2+ exchange pool and 15% of the decreases in stream water concentrations of basic cations. Decline in stream water concentrations of basic cation occurred under both increasing and decreasing exchangeable pools, depending on the process controlling the acid base status of the ecosystem. Model calculations suggest that historical forest cutting has resulted in only slight decreases in soil pools of exchangeable basic cations, and has had a limited effect on stream ANC over the long-term.  相似文献   

13.
14.
Environmental control of fine root dynamics in a northern hardwood forest   总被引:3,自引:0,他引:3  
Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (< 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over‐winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems.  相似文献   

15.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

16.
Soil freezing alters fine root dynamics in a northern hardwood forest   总被引:11,自引:1,他引:11  
The retention of nutrients within an ecosystem depends on temporal andspatial synchrony between nutrient availability and nutrient uptake, anddisruption of fine root processes can have dramatic impacts on nutrientretention within forest ecosystems. There is increasing evidence thatoverwinter climate can influence biogeochemical cycling belowground,perhaps by disrupting this synchrony. In this study, we experimentallyreduced snow accumulation in northern hardwood forest plots to examinethe effects of soil freezing on the dynamics of fine roots (< 1 mm diameter)measured using minirhizotrons. Snow removal treatment during therelatively mild winters of 1997–1998 and 1998–1999 induced mild freezingtemperatures (to –4 °C) lasting approximately three months atshallow soil depths (to –30 cm) in sugar maple and yellow birch stands.This treatment resulted in elevated overwinter fine root mortality in treatedcompared to reference plots of both species, and led to an earlier peak infine root production during the subsequent growing season. These shiftsin fine root dynamics increased fine root turnover but were not largeenough to significantly alter fine root biomass. No differences inmorality response were found between species. Laboratory tests on pottedtree seedlings exposed to controlled freezing regimes confirmed that mildfreezing temperatures (to –5 °C) were insufficient to directlyinjure winter-hardened fine roots of these species, suggesting that themarked response recorded in our forest plots was caused indirectly bymechanical damage to roots in frozen soil. Elevated fine root necromass intreated plots decomposed quickly, and may have contributed an excess fluxof about 0.5 g N/m2·yr, which is substantial relative tomeasurements of N fluxes from these plots. Our results suggest elevatedoverwinter mortality temporarily reduced fine root length in treatmentplots and reduced plant uptake, thereby disrupting the temporalsynchrony between nutrient availability and uptake and enhancing ratesof nitrification. Increased frequency of soil freezing events, as may occurwith global change, could alter fine root dynamics within the northernhardwood forest disrupting the normally tight coupling between nutrientmineralization and uptake.  相似文献   

17.
18.
There is increasing evidence that forests and forest soil contribute to the signature of chlorine composition in water bodies. However, little is known about the potential effects of land management activities on chlorine biogeochemistry. This study examines the effects of previous nitrogen addition on chlorine chemistry in a Pinus sylvestris L. forest located in south-central Sweden (60°00′N, 13°43′E). Repeated addition of nitrogen to study plots over a 20-year period resulted in total additions of 0, 450 and 900 kg N ha?1. Soil samples were collected before harvesting, and soil solution and biomass were sampled following final felling. Contrary to previous findings, we found no clear evidence that previous addition of nitrogen had hampered the formation of organic chlorine in the organic soil layer. We suggest that the effects of nitrogen addition on chlorination processes are not seen in the surface soil, but are instead manifested in the migration of organic matter in the mineral soil. Soil organic matter from the E-horizon had a lower chlorination degree in the nitrogen-amended plots than in the control plots. In addition, we observed lower Cl? levels in the seedling needles following high nitrogen fertilization (900 N) than in 450 N or control. These results add on the importance of studying chlorine dynamics with focus on what chlorinated soil organic matter can be resistant to degradation compared to average soil organic matter and what can be leached as a result of harvesting and available for vegetation.  相似文献   

19.
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O, methane (CH4) and carbon dioxide (CO2) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2O fluxes from northern hardwood forests.  相似文献   

20.
Increased use of anthropogenically fixed N and the release of N in combustion products have led to concerns about possible long-term impacts on terrestrial ecosystems. Previous studies demonstrating the potential of atmospheric N deposition to influence forest soil carbon have focused on decomposition processes with much less known about potential impacts on mycorrhiza-derived carbon. Glomalin is a unique glycoprotein produced by arbuscular mycorrhizal (AM) fungi that has been implicated in the formation of soil aggregates and potentially a significant store of soil carbon. To determine the possible impact of experimental N deposition of such stores we examined the operationally defined glomalin-related soil protein (GRSP) levels over two growing seasons in three forest types receiving background N deposition (control) or treated with 80 kg N ha−1 year−1 as NaNO3. Three sites of each of three forest types, sugar maple-basswood (SMBW), sugar maple-red oak (SMRO), and black oak-white oak (BOWO), in northern Lower Michigan were studied during the 2001 and 2002 growing seasons. GRSP were extracted from air-dried soils with citric acid and measured by the Bradford method. Analysis of variance revealed significant differences related to forest type and sample date in easily extractable Bradford reactive (EE-BRSP) and Bradford-reactive soil protein (BRSP), but failed to detect significant effects of experimental N amendment. EE-BRSP and BRSP varied in a pattern that was consistent with an AM fungal origin; a pattern that reflected the mycorrhizal types of the dominant over and understory plants of each forest ecosystem. SMBW forests dominated by AM plants had the highest levels of protein. BOWO forests with low AM plant cover had the lowest protein levels and SMRO forests were intermediate. Both Bradford-reactive fractions and their ratio varied seasonally, generally being highest in fall samples. Significant correlations observed between BRSP fractions, phosphorous, and soil organic matter were likely related to covariation of soil properties across forest types. While not statistically significant, response patterns of BRSP to N deposition were ecosystem-specific and reflected mycorrhizal types of dominant species. Abundance of these proteins reflected previously observed changes in SOC in the two forest types examined with abundant AM hosts. Specifically, nitrate addition led to BRSP decreases in SMBW and increases in SMRO forests. Changes in BRSP accounted for a small fraction of the changes in SOC; appearing to increase as a fraction of residual SOC consistent with the idea that GRSP are recalcitrant. BRSP remained unchanged at BOWO sites despite a significant increase in SOC at these sites. Our results point to the potential of proteins as contributors to differential, mycorrhizal type-specific responses to changes in soil carbon following N amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号