首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considerable genetic and pathological evidence has implicated the small, soluble protein alpha-synuclein in the pathogenesis of familial and sporadic forms of Parkinsons disease (PD). However, the precise role of alpha-synuclein in the disease process as well as its normal function remain poorly understood. We recently found that an interaction with lipid rafts is crucial for the normal, pre-synaptic localization of alpha-synuclein. To understand how alpha-synuclein interacts with lipid rafts, we have now developed an in vitro binding assay to rafts purified from native membranes. Recapitulating the specificity observed in vivo, recombinant wild type but not PD-associated A30P mutant alpha-synuclein binds to lipid rafts isolated from cultured cells and purified synaptic vesicles. Proteolytic digestion of the rafts does not disrupt the binding of alpha-synuclein, indicating an interaction with lipid rather than protein components of these membranes. We have also found that alpha-synuclein binds directly to artificial membranes whose lipid composition mimics that of lipid rafts. The binding of alpha-synuclein to these raft-like liposomes requires acidic phospholipids, with a preference for phosphatidylserine (PS). Interestingly, a variety of synthetic PS with defined acyl chains do not support binding when used individually. Rather, the interaction with alpha-synuclein requires a combination of PS with oleic (18:1) and polyunsaturated (either 20:4 or 22:6) fatty acyl chains, suggesting a role for phase separation within the membrane. Furthermore, alpha-synuclein binds with higher affinity to artificial membranes with the PS head group on the polyunsaturated fatty acyl chain rather than on the oleoyl side chain, indicating a stringent combinatorial code for the interaction of alpha-synuclein with membranes.  相似文献   

2.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2006,45(10):3386-3395
Alpha-synuclein is a presynaptic protein, the A53T and A30P mutants of which are linked independently to early-onset familial Parkinson's disease. The association of wild-type alpha-synuclein with lipid membranes was characterized previously by electron spin resonance (ESR) spectroscopy with spin-labeled lipids [Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919-12926]. Here, we study the interaction of the A53T and A30P alpha-synuclein mutants and a truncated form that lacks the acidic C-terminal domain with phosphatidylglycerol bilayer membranes, using anionic phospholipid spin labels. The strength of the interaction with phosphatidylglycerol membranes lies in the order: wild type approximately truncated > A53T > A30P > fibrils approximately 0, and only the truncated form interacts with phosphatidylcholine membranes. The selectivity of the interaction of the mutant alpha-synucleins with different spin-labeled lipid species is reduced considerably, relative to the wild-type protein, whereas that of the truncated protein is increased. Polarized infrared (IR) spectroscopy is used to study the interactions of the wild-type and truncated proteins with aligned lipid membranes and additionally to characterize the fibrillar form. Wild-type alpha-synuclein is natively unfolded in solution and acquires secondary structure upon binding to membranes containing phosphatidylglycerol. Up to 30-40% of the amide I band intensity of the membrane-bound wild-type and truncated proteins is attributable to beta-sheet structure, at the surface densities used for IR spectroscopy. The remainder is alpha-helix and residual unordered structure. Fibrillar alpha-synuclein contains 62% antiparallel beta-sheet and is oriented on the substrate surface but does not interact with deposited lipid membranes. The beta-sheet secondary-structural elements of the wild-type and truncated proteins are partially oriented on the surface of membranes with which they interact.  相似文献   

3.
Narayanan V  Scarlata S 《Biochemistry》2001,40(33):9927-9934
Although its function is unknown, alpha-synuclein is widely distributed in neural tissue and is the major component in the pathological aggregates found in patients with Parkinson's disease, Alzheimer's disease, Down's syndrome, and multiple system atrophy. In this report, we have quantified the binding alpha-synucleins to lipid membranes. In contrast to previous studies, we find, using real time equilibrium fluorescence methods, that alpha-synuclein binds strongly to large, unilamellar vesicles with either anionic or zwitterionic headgroups. Membrane binding is also strong for beta-synuclein, phosphorylated alpha-synuclein, and a synuclein mutant that is associated with familial Parkinson's disease. In solution at less than 400 nM, synuclein has a tendency to undergo concentration-dependent oligomerization as determined by changes in intrinsic fluorescence and fluorescence resonance energy transfer. Above this concentration, the protein begins to aggregate into structures visible by light scattering. Although membrane binding does not affect the secondary structure of alpha-synuclein, it greatly inhibits the ability of this protein to self-associate. Taken together, our results indicate that pathological conditions may be associated with a disruption in synuclein-membrane interactions.  相似文献   

4.
alpha-Synuclein, a pathological component of Parkinson's disease by constituting the Lewy bodies, has been suggested to be involved in membrane biogenesis via induction of amphipathic alpha-helices. Since the amphipathic alpha-helix is also known as a recognition signal of calmodulin for its target proteins, molecular interaction between alpha-synuclein and calmodulin has been investigated. By employing a chemical coupling reagent of N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline, alpha-synuclein has been shown to yield a heterodimeric 1 : 1 complex with calmodulin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and even absence of calcium, whereas beta-synuclein was more dependent upon calcium for its calmodulin interaction. The selective calmodulin interaction of alpha-synuclein in the absence of calcium was also demonstrated with the aggregation kinetics of the synucleins in which only the alpha-synuclein aggregation was affected by calmodulin. A reversible binding assay confirmed that alpha-synuclein interacted with the Ca2+-free as well as the Ca2+-bound calmodulins with almost identical Kds of 0.35 micro m and 0.31 micro m, respectively, while beta-synuclein preferentially recognized the Ca2+-bound form with a Kd of 0.68 micro m. By using a C-terminally truncated alpha-synuclein of alpha-syn97, the calmodulin binding site(s) on alpha-synuclein was(were) shown to be located on the N-terminal region where the amphipathic alpha-helices have been suggested to be induced upon membrane interaction. By employing liposome and calmodulin in a state of being either soluble or immobilized on agarose, actual competition of alpha-synuclein between membranes and calmodulin was demonstrated with the observation that alpha-synuclein previously bound to the liposome was released upon specific interaction with the calmodulins. Taken together, these data may suggest that alpha-synuclein could act not only as a negative regulator for calmodulin in the presence and even absence of calcium, but it could also exert its activity at the interface between calmodulin and membranes.  相似文献   

5.
Alpha-synuclein (AS) is an intrinsically unstructured protein in aqueous solution but is capable of forming beta-sheet-rich fibrils that accumulate as intracytoplasmic inclusions in Parkinson disease and certain other neurological disorders. However, AS binding to phospholipid membranes leads to a distinct change in protein conformation, stabilizing an extended amphipathic alpha-helical domain reminiscent of the exchangeable apolipoproteins. To better understand the significance of this conformational change, we devised a novel bacteriophage display screen to identify protein binding partners of helical AS and have identified 20 proteins with roles in diverse cellular processes related to membrane trafficking, ion channel modulation, redox metabolism, and gene regulation. To verify that the screen identifies proteins with specificity for helical AS, we further characterized one of these candidates, endosulfine alpha (ENSA), a small cAMP-regulated phosphoprotein implicated in the regulation of insulin secretion but also expressed abundantly in the brain. We used solution NMR to probe the interaction between ENSA and AS on the surface of SDS micelles. Chemical shift perturbation mapping experiments indicate that ENSA interacts specifically with residues in the N-terminal helical domain of AS in the presence of SDS but not in aqueous buffer lacking SDS. The ENSA-related protein ARPP-19 (cAMP-regulated phosphoprotein 19) also displays specific interactions with helical AS. These results confirm that the helical N terminus of AS can mediate specific interactions with other proteins and suggest that membrane binding may regulate the physiological activity of AS in vivo.  相似文献   

6.
The alpha-synuclein (alpha-syn) protein is clearly implicated in Parkinson's disease (PD). Mutations or triplication of the alpha-syn gene leads to early onset PD, possibly by accelerating alpha-syn oligomerization. alpha-syn interacts with lipids, and this membrane binding activity may relate to its toxic activity. To understand how the alpha-syn aggregation state affects its lipid binding activity we used surface plasmon resonance to study the interaction of wild-type and mutant alpha-syn with a charged phospholipid membrane, as a function of its aggregation state. Apparent dissociation constants for alpha-syn indicated that an intermediate species, present during the lag phase of amyloid formation, binds with an increased affinity to the membrane surface. Formation of this species was dependent upon the rate of fibril formation. Fluorescence anisotropy studies indicate that only upon the formation of amyloid material can alpha-syn perturb the acyl-chain region of the lipid bilayer. Circular dichroism spectroscopy showed that upon aging, both wild-type and mutant alpha-syn lose their ability to form lipid-bound alpha-helical species once they become fibrillar. These results indicate that alpha-syn forms a high affinity lipid binding intermediate species during fibril formation. Oligomeric alpha-syn is known to be toxic, and it is feasible that the high affinity binding species described here may correspond to a toxic species involved in PD.  相似文献   

7.
The aggregation of alpha-synuclein is believed to be a critical factor in the etiology of Parkinson's disease. alpha-Synuclein is an abundant neuronal protein of unknown function, which is enriched in the presynaptic terminals of neurons. Although alpha-synuclein is found predominantly in the cytosolic fractions, membrane-bound alpha-synuclein has been suggested to play an important role in fibril formation. The effects of alpha-synuclein on lipid bilayers of different compositions were determined using fluorescent environment-specific probes located at various depths. alpha-Synuclein-membrane interactions were found to affect both protein and membrane properties. Our results indicate that in addition to electrostatic interactions, hydrophobic interactions are important in the association of the protein with the bilayer, and lead to disruption of the membrane. The latter was observed by atomic force microscopy and fluorescent dye leakage from vesicles. The kinetics of alpha-synuclein fibril formation were significantly affected by the protein association and subsequent membrane disruption, and reflected the conformation of alpha-synuclein. The ability of alpha-synuclein to disrupt membranes correlated with the binding affinity of alpha-synuclein for the particular membrane composition, and to the induced helical conformation of alpha-synuclein. Protofibrillar or fibrillar alpha-synuclein caused a much more rapid destruction of the membrane than soluble monomeric alpha-synuclein, indicating that protofibrils (oligomers) or fibrils are likely to be significantly neurotoxic.  相似文献   

8.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

9.
Zhu M  Qin ZJ  Hu D  Munishkina LA  Fink AL 《Biochemistry》2006,45(26):8135-8142
Alpha-synuclein, a presynaptic protein associated with Parkinson's disease, is found as both soluble cytosolic and membrane-bound forms. Although the function of alpha-synuclein is unknown, several observations suggest that its association with membranes is important. In the present study we investigated the effect of alpha-synuclein on lipid oxidation in membranes containing phospholipids with unsaturated fatty acids. The kinetics of lipid oxidation were monitored by the change in fluorescence intensity of the dye C11-BODIPY. We find that monomeric alpha-synuclein efficiently prevented lipid oxidation, whereas fibrillar alpha-synuclein had no such effect. Our data suggest that the prevention of unsaturated lipid oxidation by alpha-synuclein requires that it bind to the lipid membrane. The antioxidant function of alpha-synuclein is attributed to its facile oxidation via the formation of methionine sulfoxide, as shown by mass spectrometry. These findings suggest that the inhibition of lipid oxidation by alpha-synuclein may be a physiological function of the protein.  相似文献   

10.
The formation of amyloid and other protein deposits in vivo is synonymous with many pathological conditions such as Alzheimer's disease, Creutzfeldt-Jakob disease and Parkinson's disease. Interestingly, many plasma apolipoproteins are also associated with amyloid deposits, including apolipoprotein (apo) A-I, apoA-II and apoE. Apolipoproteins share a number of structural and conformational properties, namely a large proportion of class A amphipathic alpha-helices and limited conformational stability in the absence of lipid. Other proteins that form amyloid such as alpha-synuclein and serum amyloid A also contain amphipathic alpha-helical domains similar to those found in apolipoproteins. In this review we develop a hypothesis to account for the widespread occurrence of apolipoproteins in amyloid deposits. We describe the conformational stability of human apoC-II and the stabilization of alpha-helical structure in the presence of phospholipid. We propose that lipid-free apoC-II forms partially folded intermediates prone to amyloid formation. Parameters that affect apolipoprotein lipid binding in vivo, such as protein and lipid oxidation or protein truncations and mutations, could promote apolipoprotein-related pathologies including those associated within amyloid deposits of atherosclerotic plaques.  相似文献   

11.
Parkinson's disease is the second most common neurodegenerative disorder, and the cause is unknown; however, substantial evidence implicates the aggregation of alpha-synuclein as a critical factor in the etiology of the disease. alpha-Synuclein is a relatively abundant brain protein of unknown function, and the purified protein is intrinsically unfolded. The amino acid sequence has seven repeats with an apolipoprotein lipid-binding motif, which are predicted to form amphiphilic helices. We have investigated the interaction of alpha-synuclein with lipid vesicles of different sizes and properties by monitoring the effects on the conformation of the protein and the kinetics of fibrillation. The nature of the interaction of alpha-synuclein with vesicles was highly dependent on the phospholipid composition, the ratio of alpha-synuclein to phospholipid, and the size of the vesicles. The strongest interactions were between alpha-synuclein and vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphate/1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phospho-RAC-(1-glycerol)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine and involved formation of helical structure in alpha-synuclein. A strong correlation was observed between the induction of alpha-helix in alpha-synuclein and the inhibition of fibril formation. Thus, helical, membrane-bound alpha-synuclein is unlikely to contribute to aggregation and fibrillation. Given that a significant fraction of alpha-synuclein is membrane-bound in dopaminergic neurons, this observation has significant physiological significance.  相似文献   

12.
GM1 specifically interacts with alpha-synuclein and inhibits fibrillation   总被引:2,自引:0,他引:2  
Martinez Z  Zhu M  Han S  Fink AL 《Biochemistry》2007,46(7):1868-1877
The aggregation of alpha-synuclein is believed to be a key step in the etiology of Parkinson's disease. Alpha-synuclein is found in the cytosol and is associated with membranes in the presynaptic region of neurons and has recently been reported to be associated with lipid rafts and caveolae. We examined the interactions between several brain sphingolipids and alpha-synuclein and found that alpha-synuclein specifically binds to ganglioside GM1-containing small unilamellar vesicles (SUVs). This results in the induction of substantial alpha-helical structure and inhibition or elimination of alpha-synuclein fibril formation, depending on the amount of GM1 present. SUVs containing total brain gangliosides, gangliosides GM2 or GM3, or asialo-GM1 had weak inhibitory effects on alpha-synuclein fibrillation and induced some alpha-helical structure, while all other sphingolipids studied showed negligible interaction with alpha-synuclein. alpha-Synuclein binding to GM1-containing SUVs was accompanied by formation of oligomers of alpha-synuclein. The familial mutant A53T alpha-synuclein interacted with GM1-containing SUVs in an analogous manner to wild type, whereas the A30P mutant showed minimal interaction. This is the first detailed report showing a direct association between GM1 and alpha-synuclein, which is attributed to specific interaction between helical alpha-synuclein and both the sialic acid and carbohydrate moieties of GM1. The recruitment of alpha-synuclein by GM1 to caveolae and lipid raft regions in membranes could explain alpha-synuclein's localization to presynaptic membranes and raises the possibility that perturbation of GM1/raft association could induce changes in alpha-synuclein that contribute to the pathogenesis of PD.  相似文献   

13.
Alpha- and beta-synuclein are closely related proteins, the first of which is associated with deposits formed in neurodegenerative conditions such as Parkinson's disease while the second appears to have no relationship to any such disorders. The aggregation behavior of alpha- and beta-synuclein as well as a series of chimeric variants were compared by exploring the structural transitions that occur in the presence of a widely used lipid mimetic, sodium dodecyl sulfate (SDS). We found that the aggregation rates of all these protein variants are significantly enhanced by low concentrations of SDS. In particular, we inserted the 11-residue sequence of mainly hydrophobic residues from the non-amyloid-beta-component (NAC) region of alpha-synuclein into beta-synuclein and show that the fibril formation rate of this chimeric protein is only weakly altered from that of beta-synuclein. These intrinsic propensities to aggregate are rationalized to a very high degree of accuracy by analysis of the sequences in terms of their associated physicochemical properties. The results begin to reveal that the differences in behavior are primarily associated with a delicate balance between the positions of a range of charged and hydrophobic residues rather than the commonly assumed presence or absence of the highly aggregation-prone region of the NAC region of alpha-synuclein. This conclusion provides new insights into the role of alpha-synuclein in disease and into the factors that regulate the balance between solubility and aggregation of a natively unfolded protein.  相似文献   

14.
We have used NMR spectroscopy and limited proteolysis to characterize the structural properties of the Parkinson's disease-related protein alpha-synuclein in lipid and detergent micelle environments. We show that the lipid or micelle surface-bound portion of the molecule adopts a continuously helical structure with a single break. Modeling alphaS as an ideal alpha-helix reveals a hydrophobic surface that winds around the helix axis in a right-handed fashion. This feature is typical of 11-mer repeat containing sequences that adopt right-handed coiled coil conformations. In order to bind a flat or convex lipid surface, however, an unbroken helical alphaS structure would need to adopt an unusual, slightly unwound, alpha11/3 helix conformation (three complete turns per 11 residues). The break we observe in the alphaS helix may allow the protein to avoid this unusual conformation by adopting two shorter stretches of typical alpha-helical structure. However, a quantitative analysis suggests the possibility that the alpha11/3 conformation may in fact exist in lipid-bound alphaS. We discuss how structural features of helical 11-mer repeats could play a role in the reversible lipid binding function of alpha-synuclein and generalize this argument to include the 11-mer repeat-containing apolipoproteins, which also require the ability to release readily from lipid surfaces. A search of protein sequence databases confirms that synuclein-like 11-mer repeats are present in other proteins that bind lipids reversibly and predicts such a role for a number of hypothetical proteins of unknown function.  相似文献   

15.
The aggregation of alpha-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of alpha-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with alpha-synuclein by NMR and assigned the binding site to C-terminal residues 109-140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 --> +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by approximately 10(4) and the rate of monomer addition approximately 40-fold. Significant secondary structure is not induced in monomeric alpha-synuclein by polyamines at 15 degrees C. Instead, NMR reveals changes in a region (aa 22-93) far removed from the polyamine binding site and presumed to adopt the beta-sheet conformation characteristic of fibrillar alpha-synuclein. We conclude that the C-terminal domain acts as a regulator of alpha-synuclein aggregation.  相似文献   

16.
There is substantial evidence which implicates alpha-synuclein and its ability to aggregate and bind vesicle membranes as critical factors in the development of Parkinson's disease. In order to investigate the interaction between alpha-synuclein wild type (Wt) and its familial mutants, A53T and A30P with lipid membranes, we developed a novel lipid binding assay using surface enhanced laser desorption/ionisation-time of flight-mass spectrometry (SELDI-TOF MS). Wt and A53T exhibited similar lipid binding profiles; monomeric species and dimers bound with high relative affinity to the lipid surface, the latter of which exhibited preferential binding. Wt and A53T trimers and tetramers were also detected on the lipid surface. A30P exhibited a unique lipid binding profile; monomeric A30P bound with a low relative affinity, however, the dimeric species of A30P exhibited a higher binding ability. Larger order A30P oligomers were not detected on the lipid surface. Tapping mode atomic force microscopy (AFM) imaging was conducted to further examine the alpha-synuclein-lipid interaction. AFM analysis revealed Wt and its familial mutants can penetrate lipid membranes or disrupt the lipid and bind the hydrophobic alkyl self-assembled monolayer (SAM) used to form the lipid layer. The profile of these studied proteins revealed the presence of 'small features' consistent with the presence of monomeric and dimeric forms of the protein. These data collectively indicate that the dimeric species of Wt and its mutants can bind and cause membrane perturbations.  相似文献   

17.
alpha-Synuclein is a protein normally involved in presynaptic vesicle homeostasis. It participates in the development of Parkinson's disease, in which the nerve cell lesions, Lewy bodies, accumulate alpha-synuclein filaments. The synaptic neurotransmitter release is primarily dependent on Ca(2+)-regulated processes. A microdialysis technique was applied showing that alpha-synuclein binds Ca(2+) with an IC(50) of about 2-300 microm and in a reaction uninhibited by a 50-fold excess of Mg(2+). The Ca(2+)-binding site consists of a novel C-terminally localized acidic 32-amino acid domain also present in the homologue beta-synuclein, as shown by Ca(2+) binding to truncated recombinant and synthetic alpha-synuclein peptides. Ca(2+) binding affects the functional properties of alpha-synuclein. First, the ligand binding of (125)I-labeled bovine microtubule-associated protein 1A is stimulated by Ca(2+) ions in the 1-500 microm range and is dependent on an intact Ca(2+) binding site in alpha-synuclein. Second, the Ca(2+) binding stimulates the proportion of (125)I-alpha-synuclein-containing oligomers. This suggests that Ca(2+) ions may both participate in normal alpha-synuclein functions in the nerve terminal and exercise pathological effects involved in the formation of Lewy bodies.  相似文献   

18.
Alpha-synuclein is an abundant protein in the central nervous system that is associated with a number of neurodegenerative disorders, including Parkinson's disease. Its physiological function is poorly understood, although recently it was proposed to function as a fatty acid binding protein. To better define a role for alpha-synuclein in brain fatty acid uptake and metabolism, we infused awake, wild-type, or alpha-synuclein gene-ablated mice with [1-(14)C]palmitic acid (16:0) and assessed fatty acid uptake and turnover kinetics in brain phospholipids. Alpha-synuclein deficiency decreased brain 16:0 uptake 35% and reduced its targeting to the organic fraction. The incorporation coefficient for 16:0 entering the brain acyl-CoA pool was significantly decreased 36% in alpha-synuclein gene-ablated mice. Because incorporation coefficients alone are not predictive of fatty acid turnover in individual phospholipid classes, we calculated kinetic values for 16:0 entering brain phospholipid pools. Alpha-synuclein deficiency decreased the incorporation rate and fractional turnover of 16:0 in a number of phospholipid classes, but also increased the incorporation rate and fractional turnover of 16:0 in the choline glycerophospholipids. No differences in incorporation rate or turnover were observed in liver phospholipids, confirming that these changes in lipid metabolism were brain specific. Using titration microcalorimetry, we observed no binding of 16:0 or oleic acid to alpha-synuclein in vitro. Thus, alpha-synuclein has effects on 16:0 uptake and metabolism similar to those of an FABP, but unlike FABP, it does not directly bind 16:0; hence, the mechanism underlying these effects is different from that of a classical FABP.  相似文献   

19.
Alpha-synuclein is a 140 residue protein associated with Parkinson's disease. Intraneural inclusions called Lewy bodies and Lewy neurites are mainly composed of alpha-synuclein aggregated into amyloid fibrils. Other amyloidogenic proteins, such as the beta amyloid peptide involved in Alzheimer's disease and the prion protein (PrP) associated with Creuztfeldt-Jakob's disease, are known to possess "tilted peptides". These peptides are short protein fragments that adopt an oblique orientation at a hydrophobic/hydrophilic interface, which enables destabilization of the membranes. In this paper, sequence analysis and molecular modelling predict that the 67-78 fragment of alpha-synuclein is a tilted peptide. Its destabilizing properties were tested experimentally. The alpha-synuclein 67-78 peptide is able to induce lipid mixing and leakage of unilamellar liposomes. The neuronal toxicity, studied using human neuroblastoma cells, demonstrated that the alpha-synuclein 67-78 peptide induces neurotoxicity. A mutant designed by molecular modelling to be amphipathic was shown to be significantly less fusogenic and toxic than the wild type. In conclusion, we have identified a tilted peptide in alpha-synuclein, which could be involved in the toxicity induced during amyloidogenesis of alpha-synuclein.  相似文献   

20.
alpha-Synuclein exists in two different compartments in vivo-- correspondingly existing as two different forms: a membrane-bound form that is predominantly alpha-helical and a cytosolic form that is randomly structured. It has been suggested that these environmental and structural differences may play a role in aggregation propensity and development of pathological lesions observed in Parkinson's disease (PD). Such effects may be accentuated by mutations observed in familial PD kindreds. In order to test this hypothesis, wild-type and A53T mutant alpha-synuclein interactions with rat brain synaptosomal membranes were examined. Previous data has demonstrated that the A30P mutant has defective lipid binding and therefore was not examined in this study. Electron microscopy demonstrated that wild-type alpha-synuclein fibrillogenesis is accelerated in the presence of synaptosomal membranes whereas the A53T alpha-synuclein fibrillogenesis is inhibited under the same conditions. These results suggested that subtle sequence changes in alpha-synuclein could significantly alter interaction with membrane bilayers. Fluorescence and absorption spectroscopy using environment sensitive probes demonstrated variations in the inherent lipid properties in the presence and absence of alpha-synuclein. Addition of wild-type alpha-synuclein to synaptosomes did not significantly alter the membrane fluidity at either the fatty acyl chains or headgroup space, suggesting that synaptosomes have a high capacity for alpha-synuclein binding. In contrast, synaptosomal membrane fluidity was decreased by A53T alpha-synuclein binding with concomitant packing of the lipid headgroups. These results suggest that alterations in alpha-synuclein-lipid interactions may contribute to physiological changes detected in early onset PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号