首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation.  相似文献   

2.
Tropoelastin is the monomeric form of elastin, a major polymeric protein of the extracellular elastic matrix of vertebrate tissues with properties of extensibility and elastic recoil. Mammalian and avian species contain a single gene for tropoelastin. A tropoelastin gene has also previously been identified in amphibians. In contrast, two tropoelastin genes with different tissue expression patterns have been described in teleosts. While general characteristics of tropoelastins, such as alternating arrangements of hydrophobic and crosslinking domains, are conserved across a wide phylogenetic range, sequences of these domains are highly variable, particularly when amphibian and teleost tropoelastins are included. For this reason exon-to-exon correspondence is not clear, and overall alignment of tropoelastin sequences across all species is not possible. An exception to this is the C-terminal exon, whose coding sequence has been very well-conserved across all species described to date. In mammalians this C-terminal domain has been shown to be important for interactions with cells and other matrix-associated proteins involved in matrix assembly. Here we identify and characterize a second tropoelastin gene in the frog with several unusual characteristics, the most striking of which is truncation of the C-terminal domain, deleting normally conserved sequence motifs. We demonstrate that, in spite of the absence of these motifs, both frog tropoelastin genes are expressed and incorporated into the elastic matrix, although with differential tissue localizations.  相似文献   

3.
Elastin self-assembles from monomers into polymer networks that display elasticity and resilience. The first major step in assembly is a liquid–liquid phase separation known as coacervation. This process represents a continuum of stages from initial phase separation to early growth of droplets by coalescence and later “maturation” leading to fiber formation. Assembly of tropoelastin-rich globules is on pathway for fiber formation in vivo. However, little is known about these intermediates beyond their size distribution. Here we investigate the contribution of sequence and structural motifs from full-length tropoelastin and a set of elastin-like polypeptides to the maturation of coacervate assemblies, observing their growth, stability and interaction behavior, and polypeptide alignment within matured globules. We conclude that maturation is driven by surface properties, leading to stabilization of the interface between the hydrophobic interior and aqueous solvent, potentially through structural motifs, and discuss implications for droplet interactions in fiber formation.  相似文献   

4.
Following cellular secretion into the extracellular matrix, tropoelastin is transported, deposited, and cross-linked to make elastin. Assembly by coacervation was examined for an isoform of tropoelastin that lacks the hydrophilic domain encoded by exon 26A. It is equivalent to a naturally secreted form of tropoelastin and shows similar coacervation performance to its partner containing 26A, thereby generalizing the concept that splice form variants are able to coacervate under comparable conditions. This is optimal under physiological conditions of temperature, salt concentration, and pH. The proteins were examined for their ability to interact with extracellular matrix glycosaminoglycans. These negatively charged molecules interacted with positively charged lysine residues and promoted coacervation of tropoelastin in a temperature- and concentration-dependent manner. A testable model for elastin-glycosaminoglycan interactions is proposed, where tropoelastin deposition during elastogenesis is encouraged by local exposure to matrix glycosaminoglycans. Unmodified proteins are retained at approximately 3 microM dissociation constant. Following lysyl oxidase modification of tropoelastin lysine residues, they are released from glycosaminoglycan interactions, thereby permitting those residues to contribute to elastin cross-links.  相似文献   

5.
Fibulin-5 is believed to play an important role in the elastic fiber formation. The present experiments were carried out to characterize the molecular interaction between fibulin-5 and tropoelastin. Our data showed that the divalent cations of Ca(2+), Ba(2+) and Mg(2+) significantly enhanced the binding of fibulin-5 to tropoelastin. In addition, N-linked glycosylation of fibulin-5 does not require for the binding to tropoelastin. To address the fibulin-5 binding site on tropoelastin constructs containing, exons 2-15 and exons 16-36, of tropoelastin were used. Fibulin-5 binding was significantly reduced to either fragment and also to a mixture of the two fragments. These results suggested that the whole molecule of tropoelastin was required for the interaction with fibulin-5. In co-immunoprecipitation experiments, tropoelastin binding to fibulin-5 was enhanced by an increase of temperature and sodium chloride concentration, conditions that enhance the coacervation of tropoelastin. The binding of tropoelastin fragments to fibulin-5 was directly proportional to their propensity to coacervate. Furthermore, the addition of fibulin-5 to tropoelastin facilitated coacervation. Taken together, the present study shows that fibulin-5 enhances elastic fiber formation in part by improving the self-association properties of tropoelastin.  相似文献   

6.
The temperature-dependent association of tropoelastin molecules through coacervation is an essential step in their assembly leading to elastogenesis. The relative contributions of C-terminal hydrophobic domains in coacervation were assessed. Truncated tropoelastins were constructed with N termini positioned variably downstream of domain 25. The purified proteins were assessed for their ability to coacervate. Disruption to domain 26 had a substantial effect and abolished coacervation. Circular dichroism spectroscopy of an isolated peptide comprising domain 26 showed that it undergoes a structural transition to a state of increased order with increasing temperature. Protease mapping demonstrated that domain 26 is flanked by surface sites and is likely to be in an exposed position on the surface of the tropoelastin molecule. These results suggest that the hydrophobic domain 26 is positioned to play a dominant role in the intermolecular interactions that occur during coacervation.  相似文献   

7.
Elastin macromolecular assembly is a highly complex mechanism involving many steps including coacervation, cross-linking, and probably other (not known) phenomena. In past studies, it has been proposed that the C-terminal part of tropoelastin is also involved in this process and may play a key role in tropoelastin interactions with other proteins of the final elastic fibres scaffold. Presented here are the results of the biophysical studies (biospectroscopy, bioinformatics) of the C-terminal domain of tropoelastin. We report the detailed structures adopted by the oxidized (native) and reduced forms of the free synthetic peptide with sequence encoded by exon 36 of human tropoelastin (GGACLGKACGRKRK) and propose a dynamical interpretation of which structures may be involved in interactions with other extra-cellular matrix proteins. We also suggest that these structures may be retrieved in other proteins sharing a consensus sequence; however no definitive conclusion can be drawn here on a possible structure-function relationship.  相似文献   

8.
This study concerns the interfacial properties of the plant proteins-arabic gum coacervates, which are involved in encapsulation processes based on complex coacervation. The results make it possible to deduce the prerequisite characteristics of the protein, which are involved in the coacervate interfacial properties. The influence of pH and concentration on protein interfacial properties was also studied so as to enable us to predict the best conditions to achieve encapsulation. It has been established that, to obtain a good encapsulation yield, the coacervate must show high surface-active properties and its adsorption on the oil droplets must be favored compared to the free protein adsorption. On the other hand, mechanical properties of the interfacial film made of the coacervate, appear to be a key parameter, as reflected by the dilational viscoelasticity measurements. When compared to the properties of the proteins films, an increase of the rigidity of the interfacial film was shown with the coacervates. It was also observed that viscoelastic properties of the coacervate film were strongly reduced, as well as the associated relaxation times. In acidic conditions, the coacervates containing alpha-gliadin are characterized by an interfacial viscoelastic behavior. This behavior reflects the softness of the interfacial film. This viscoelasticity allows also the formation of a continuous layer around the oil droplets to be encapsulated. Drop tensiometry is shown to be a method that could allow the most adapted protein to be selected and the conditions of the coacervation process to be optimized with regard to concentration and pH.  相似文献   

9.
Elastin is a self-assembling protein of the extracellular matrix that provides tissues with elastic extensibility and recoil. The monomeric precursor, tropoelastin, is highly hydrophobic yet remains substantially disordered and flexible in solution, due in large part to a high combined threshold of proline and glycine residues within hydrophobic sequences. In fact, proline-poor elastin-like sequences are known to form amyloid-like fibrils, rich in β-structure, from solution. On this basis, it is clear that hydrophobic elastin sequences are in general optimized to avoid an amyloid fate. However, a small number of hydrophobic domains near the C terminus of tropoelastin are substantially depleted of proline residues. Here we investigated the specific contribution of proline number and spacing to the structure and self-assembly propensities of elastin-like polypeptides. Increasing the spacing between proline residues significantly decreased the ability of polypeptides to reversibly self-associate. Real-time imaging of the assembly process revealed the presence of smaller colloidal droplets that displayed enhanced propensity to cluster into dense networks. Structural characterization showed that these aggregates were enriched in β-structure but unable to bind thioflavin-T. These data strongly support a model where proline-poor regions of the elastin monomer provide a unique contribution to assembly and suggest a role for localized β-sheet in mediating self-assembly interactions.  相似文献   

10.
Clarke AW  Wise SG  Cain SA  Kielty CM  Weiss AS 《Biochemistry》2005,44(30):10271-10281
In forming elastic fibers, microfibrils act as the scaffold sites for depositing the elastin precursor tropoelastin. We examined key binding interactions that promote massive tropoelastin association through coacervation. Using a segment of the microfibril protein fibrillin-1, PF2, known to bind full-length tropoelastin, we mapped its interaction site to the N-terminal region of tropoelastin bounded by domains 2 and 18. Precise contact residues between domain 4 of tropoelastin and domain 16 of fibrillin-1 were discovered through a novel combination of transglutaminase cross-linking and mass spectroscopy, with contact sites at residues K38 of tropoelastin and Q669 of fibrillin-1. This is the first report of a role for this region of tropoelastin in microfibril interactions. The addition of PF2 thermodynamically facilitated the coacervation of tropoelastin, resulting in smaller changes in entropy and enthalpy values for the coacervating system. A novel multicomponent in vitro tropoelastin assembly reaction system demonstrated that amassed tropoelastin was spatially and preferentially directed to surfaces coated with PF2 as expected for organized three-dimensional distribution during tissue elastogenesis. This study underscores the role of this part of fibrillin-1 as an anchor point for tropoelastin at the microfibril-elastin junction during the initial stages of elastic fiber assembly.  相似文献   

11.
Microfibril-associated MAGP-2 stimulates elastic fiber assembly   总被引:3,自引:0,他引:3  
Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 regulates elastic fiber assembly, we used an in vitro model featuring doxycycline-regulated cells conditionally overexpressing exogenous MAGP-2 and constitutively expressing enhanced green fluorescent protein-tagged tropoelastin. Analysis by immunofluorescent staining showed that MAGP-2 overexpression dramatically increased elastic fibers levels, independently of extracellular levels of soluble tropoelastin, indicating that MAGP-2 stimulates elastic fiber assembly. This was associated with increased levels of matrix-associated MAGP-2. Electron microscopy showed that MAGP-2 specifically associates with microfibrils and that elastin globules primarily colocalize with MAGP-2-associated microfibrils, suggesting that microfibril-associated MAGP-2 facilitates elastic fiber assembly. MAGP-2 overexpression did not change levels of matrix-associated fibrillin-1, MAGP-1, fibulin-2, fibulin-5, or emilin-1, suggesting that microfibrils and other elastic fiber-associated proteins known to regulate elastogenesis do not mediate MAGP-2-induced elastic fiber assembly. Moreover, mutation analysis showed that MAGP-2 does not stimulate elastic fiber assembly through its RGD motif, suggesting that integrin receptor binding does not mediate MAGP-2-induced elastic fiber assembly. Because MAGP-2 interacts with Jagged-1 that controls cell-matrix interaction and cell motility, two key factors in elastic fiber macroassembly, microfibril-associated MAGP-2 may stimulate elastic fiber macroassembly by targeting the release of elastin globules from the cell membrane onto developing elastic fibers.  相似文献   

12.
Miao M  Cirulis JT  Lee S  Keeley FW 《Biochemistry》2005,44(43):14367-14375
Elastin is a major structural protein found in large blood vessels, lung, ligaments, and skin, imparting the physical properties of extensibility and elastic recoil to these tissues. To achieve the required structural durability of the elastic matrix, the elastin monomer, tropoelastin, undergoes ordered assembly into a covalently cross-linked, fibrillar polymeric structure. Human tropoelastin consists of 34 exons coding for alternating hydrophobic and cross-linking domains. Using a series of well-defined recombinant polypeptides based on human elastin sequences mimicking native elastin, we have previously investigated the role of sequence and context of hydrophobic domains in elastin self-assembly. Here, we demonstrate that the structure of both cross-linking and hydrophobic domains have significant effects on the assembly of these polypeptides. Removing a putative flexible hinge region in the center of a cross-linking domain substantially increased the alpha-helical content and strongly promoted their self-aggregation. However, while trifluoroethanol (TFE) promoted and urea inhibited self-assembly of these polypeptides, these effects were not predominantly due to altered alpha-helicity of the polypeptides. Our results suggest that, while increased alpha helicity also favors this process, the major effect of TFE to promote organized self-assembly of elastin-like polypeptides is likely related to direct effects of this cosolvent on hydrophobic domains. Such simple elastin polypeptide models can provide an important tool for understanding the relationships between sequence, structure, and polymeric assembly of elastin.  相似文献   

13.
Tu Y  Weiss AS 《Biomacromolecules》2008,9(7):1739-1744
Elastogenesis and elastin repair depend on the secretion of tropoelastin from the cell, yet cellular production is low in the many biological systems that have been studied. To address the apparent paradox of a paucity of tropoelastin for cell surface microassembly, we examined the effects of the glycosaminoglycans heparin, heparan sulfate, and chondroitin sulfate B, on tropoelastin aggregate formation through coacervation. We found a significant effect, particularly of heparin, on the minimum or critical concentration of tropoelastin, which was required for microassembly, lowering critical concentration to a point that it was no longer detectable. The assemblies resulted in protein droplet formation that was visually indistinguishable from the spherules that typify coacervation. The spherules readily coalesced in the presence of heparin and higher concentrations of tropoelastin, resulting in an almost continuous layer of coacervated tropoelastin. Four stages of droplet behavior were observed: early droplet formation, approximately 6 mum droplet formation, and fusion of droplets followed by the formation of a coalesced layer. We conclude that glycosaminoglycans in the extracellular matrix have the capacity to promote coacervation at low concentrations of tropoelastin.  相似文献   

14.
Elastin is a polymeric structural protein that imparts the physical properties of extensibility and elastic recoil to tissues. The mechanism of assembly of the tropoelastin monomer into the elastin polymer probably involves extrinsic protein factors but is also related to an intrinsic capacity of elastin for ordered assembly through a process of hydrophobic self-aggregation or coacervation. Using a series of simple recombinant polypeptides based on elastin sequences and mimicking the unusual alternating domain structure of native elastin, we have investigated the influence of sequence motifs and domain structures on the propensity of these polypeptides for coacervation. The number of hydrophobic domains, their context in the alternating domain structure of elastin, and the specific nature of the hydrophobic domains included in the polypeptides all had major effects on self-aggregation. Surprisingly, in polypeptides with the same number of domains, propensity for coacervation was inversely related to the mean Kyte-Doolittle hydropathy of the polypeptide. Point mutations designed to increase the conformational flexibility of hydrophobic domains had the unexpected effect of suppressing coacervation and promoting formation of amyloid-like fibers. Such simple polypeptides provide a useful model system for understanding the relationship between sequence, structure, and mechanism of assembly of polymeric elastin.  相似文献   

15.
Elastic fibers play an important role in the characteristic resilience of many tissues. The assembly of tropoelastin into a fibrillar matrix is a complex stepwise process and the deposition and cross-linking of tropoelastin are believed to be key steps of elastic fiber formation. However, the detailed mechanisms of elastic fiber assembly have not been defined yet. Here, we demonstrate the relationship between deposition and the cross-linking/maturation of tropoelastin. Our data show that a C-terminal half-fragment of tropoelastin encoded by exons 16-36 (BH) is deposited onto microfibrils, yet we detect very limited amounts of the cross-linking amino acid, desmosine, an indicator of maturation, whereas the N-terminal half-fragment encoded by exons 2-15 (FH) was deficient for both deposition and cross-linking, suggesting that elastic fiber formation requires full-length tropoelastin molecules. A series of experiments using mutant BH fragments, lacking either exon 16 or 30, or a deletion of both exons showed that self-association of tropoelastin polypeptides was an early step in elastic fiber assembly. Immunofluorescence and Western blot assay showed that the treatment of cell culture medium or conditioned medium with beta-aminopropionitrile to inhibit cross-linking, prevented both the deposition and polymerization of tropoelastin. In conclusion, our present results support the view that self-association and oxidation by lysyl oxidase precedes tropoelastin deposition onto microfibrils and the entire molecule of tropoelastin is required for this following maturation process.  相似文献   

16.
Tropoelastin assembly is a key step in the formation of elastin. We consider how nanoscale intracellular assemblies of tropoelastin can congregate in an extracellular environment to give microscale aggregates. We describe novel 200–300 nm spherical particles that serve as intermediates in the formation of the coacervate. Their aggregation gives 800 nm to 1 µm species. This process is facilitated by heparan sulfate and dermatan sulfate interactions which effectively lower the critical concentration to facilitate this transition. This coacervation process was examined using a panel of heparin chains of various lengths and showed greatest efficacy for the decasaccharide, followed by the octasaccharide, while the hexasaccharide displayed the shortest efficacious length. We propose that these oligosaccharide interactions enable the charge-mediated aggregation of positively charged tropoelastin. This biochemistry models glycosaminoglycan interactions on the cell surface during elastogenesis which is characterized by the clustering of nascent tropoelastin aggregates to form micron-sized spherules.  相似文献   

17.
The initial steps of elastic fiber assembly were investigated using an in vitro assembly model in which purified recombinant tropoelastin (rbTE) was added to cultures of live or dead cells. The ability of tropoelastin to associate with preexisting elastic fibers or microfibrils in the extracellular matrix was then assessed by immunofluorescence microscopy using species-specific tropoelastin antibodies. Results show that rbTE can associate with elastic fiber components in the absence of live cells through a process that does not depend on crosslink formation. Time course studies show a transformation of the deposited protein from an initial globular appearance early in culture to a more fibrous structure as the matrix matures. Deposition required the C-terminal region of tropoelastin and correlated with the presence of preexisting elastic fibers or microfibrils. Association of exogenously added tropoelastin to the cellular extracellular matrix was inhibited by the addition of heparan sulfate but not chondroitin sulfate sugars. Together, these results suggest that the matrix elaborated by the cell is sufficient for the initial deposition of tropoelastin in the extracellular space and that elastin assembly may be influenced by the composition of sulfated proteoglycans in the matrix.  相似文献   

18.
MAGP1 is a small molecular mass protein associated with microfibrils in the extracellular matrix (ECM). To identify the molecular basis of its interaction with other microfibrillar proteins, deletion constructs of MAGP1 were expressed in a mammalian cell system that served as a model for microfibril assembly. This study identified a 54-amino acid sequence in the carboxyl-terminal region of the protein that defines a matrix-binding domain that is sufficient to target MAGP1 to the ECM. Site-directed mutagenesis demonstrated that binding activity is dependent on the presence of 7 cysteine residues in this sequence. MAGP2 contains a sequence similar to the matrix-binding domain of MAGP1, but could not associate with the ECM because of a single amino acid change. Two naturally occurring MAGP1 splice variants, MAGP1B (human-specific) and MAGP1D (found in mice), localized intracellularly when expressed as chimeric proteins with green fluorescent protein in rat lung fibroblasts. This suggests a second action site for MAGP1.  相似文献   

19.
Tropoelastin     
Tropoelastin is a 60-72 kDa alternatively spliced extracellular matrix protein and a key component of elastic fibres. It is found in all vertebrates except for cyclostomes. Secreted tropoelastin is tethered to the cell surface, where it aggregates into organised spheres for cross-linking and incorporation into growing elastic fibres. Tropoelastin is characterised by alternating hydrophobic and hydrophilic domains and is highly flexible. The conserved C-terminus is an area of the molecule of particular biological importance in that it is required for both incorporation into elastin and for cellular interactions. Mature cross-linked tropoelastin gives elastin, which confers resilience and elasticity on a diverse range of tissues. Elastin gene disruptions in disease states and knockout mice emphasise the importance of proper tropoelastin production and assembly, particularly in vascular tissue. Tropoelastin constructs hold promise as biomaterials as they mimic many of elastin's physical and biological properties with the capacity to replace damaged elastin-rich tissue.  相似文献   

20.
Tropoelastin is the soluble precursor of elastin that bestows tissue elasticity in vertebrates. Tropoelastin is soluble at 20 degrees C in phosphate-buffered saline, pH 7.4, but at 37 degrees C equilibrium is established between soluble protein and insoluble coacervate. Sedimentation equilibrium studies performed before (20 degrees C) and after (37 degrees C) coacervation showed that the soluble component was strictly monomeric. Sedimentation velocity experiments revealed that at both temperatures soluble tropoelastin exists as two independently sedimenting monomeric species present in approximately equal concentrations. Species 1 had a frictional ratio at both temperatures of approximately 2.2, suggesting a very highly expanded or asymmetric protein. Species 2 displayed a frictional ratio at 20 degrees C of 1.4 that increased to 1.7 at 37 degrees C, indicating a compact and symmetrical conformation that expanded or became asymmetric at the higher temperature. The slow interconversion of the two monomeric species contrasts with the rapid and reversible process of coacervation suggesting both efficiently incorporate into the coacervate. A hydrated protein of equivalent molecular weight modeled as a sphere and a flexible chain was predicted to have a frictional ratio of 1.2 and 1.6, respectively. Tropoelastin appeared as a single species when studied by pulsed field-gradient spin-echo NMR, but computer modeling showed that the method was insensitive to the presence of two species of equal concentration having similar diffusion coefficients. Scintillation proximity assays using radiolabeled tropoelastin and sedimentation analysis showed that the coacervation at 37 degrees C was a highly cooperative monomer-n-mer self-association. A critical concentration of 3.4 g/liter was obtained when the coacervate was modeled as a helical polymer formed from the monomers via oligomeric intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号