首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Denessiouk KA  Johnson MS 《Proteins》2000,38(3):310-326
ATP is a ligand common to many proteins, yet it is unclear whether common recognition patterns do exist among the many different folds that bind ATP. Previously, it was shown that cAMP-dependent protein kinase, D-Ala:D-Ala ligase and the alpha-subunit of the alpha 2 beta 2 ribonucleotide reductase do share extensive common structural elements for ATP recognition although their folds are different. Here, we have made a survey of structures that bind ATP and compared them with the key features seen in these three proteins. Our survey shows that 12 different fold types share a specific recognition pattern for the adenine moiety, and 8 of these folds have a common structural framework for recognition of the AMP moiety of the ligand. The common framework consists of a tripeptide segment plus three additional residues, which provides similar polar and hydrophobic interactions between the protein and mononucleotide. Consensus interactions are represented by four key hydrogen bonds present in each fold type. Two of these four hydrogen bonds, together with three aliphatic residues, form a specific recognition pattern for the adenine moiety in all 12 folds. These similarities point to a structural-functional requirement shared by these different mononucleotide-binding proteins that represent at this time 28% of the adenine mononucleotide complexes found in the Brookhaven Protein Data Bank.  相似文献   

2.
Nucleotides are among the most extensively exploited chemical moieties in nature and, as a part of a handful of different protein ligands, nucleotides play key roles in energy transduction, enzymatic catalysis and regulation of protein function. We have previously reported that in many proteins with different folds and functions a distinctive adenine-binding motif is involved in the recognition of the Watson-Crick edge of adenine. Here, we show that many proteins do have clear structural motifs that recognize adenosine (and some other nucleotides and nucleotide analogs) not only through the Watson-Crick edge, but also through the sugar and Hoogsteen edges. Each of the three edges of adenosine has a donor-acceptor-donor (DAD) pattern that is often recognized by proteins via a complementary acceptor-donor-acceptor (ADA) motif, whereby three distinct hydrogen bonds are formed: two conventional N-H...O and N-H...N hydrogen bonds, and one weak C-H...O hydrogen bond. The local conformation of the adenine-binding loop is betabetabeta or betabetaalpha and reflects the mode of nucleotide binding. Additionally, we report 21 proteins from five different folds that simultaneously recognize both the sugar edge and the Watson-Crick edge of adenine. In these proteins a unique beta-loop-beta supersecondary structure grasps an adenine-containing ligand between two identical adenine-binding motifs as part of the betaalphabeta-loop-beta fold.  相似文献   

3.
Three ATP-dependent enzymes with different folds, cAMP-dependent protein kinase, D-Ala:D-Ala ligase and the alpha-subunit of the alpha2beta2 ribonucleotide reductase, have a similar organization of their ATP-binding sites. The most meaningful similarity was found over 23 structurally equivalent residues in each protein and includes three strands each from their beta-sheets, in addition to a connecting loop. The equivalent secondary structure elements in each of these enzymes donate four amino acids forming key hydrogen bonds responsible for the common orientation of the "AMP" moieties of their ATP-ligands. One lysine residue conserved throughout the three families binds the alpha-phosphate in each protein. The common fragments of structure also position some, but not all, of the equivalent residues involved in hydrophobic contacts with the adenine ring. These examples of convergent evolution reinforce the view that different proteins can fold in different ways to produce similar structures locally, and nature can take advantage of these features when structure and function demand it, as shown here for the common mode of ATP-binding by three unrelated proteins.  相似文献   

4.
Phosphate is one of the most frequently exploited chemical moieties in nature, present in a wide range of naturally occurring and critically important small molecules. Several phosphate group recognition motifs have been found for a few narrow groups of proteins, but for many protein families and folds the mode of phosphate recognition remains unclear. Here, we have analyzed the structures of all fold-representative protein-ligand complexes listed in the FSSP database, regardless of whether the bound ligand included a phosphate group. Based on a phosphate-binding motif that we identified in pyridoxal phosphate binding proteins, we have identified a new anion-binding structural motif, CalphaNN, common to 104 fold-representative protein structures that belong to 62 different folds, of which 86% of the fold-representative structures (51 folds) bind phosphate or lone sulfate ions. This motif leads to a precise mode for phosphate group recognition forming a structure where atoms of the phosphate group occupy the most favorable stabilizing positions. The anion-binding CalphaNN motif is based only on main-chain atoms from three adjacent residues, has a conservative betaalphaalpha or betaalphabeta geometry, and recognizes the free phosphate (sulfate) ion as well as one or more phosphate groups in nucleotides and in a variety of cofactors. Moreover, the CalphaNN motif is positioned in functionally important regions of protein structures and often residues of the motif directly participate in the function of the protein.  相似文献   

5.
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.  相似文献   

6.
The molecular recognition and discrimination of adenine and guanine ligand moieties in complexes with proteins have been studied using empirical observations on carefully selected crystal structures. The distribution of protein folds that bind these purines has been found to differ significantly from that across the whole PDB, but the most populated architectures and folds are also the most common in three genomes from the three different domains of life. The protein environments around the two nucleic acid bases were significantly different, in terms of the propensities of amino acid residues to be in the binding site, as well as their propensities to form hydrogen bonds to the bases. Plots of the distribution of protein atoms around the two purines clearly show different clustering of hydrogen bond donors and acceptors opposite complimentary acceptors and donors in the rings, with hydrophobic areas below and above the rings. However, the clustering pattern is fuzzy, reflecting the variety of ways that proteins have evolved to recognise the same molecular moiety. Furthermore, an analysis of the conservation of residues in the protein chains binding guanine shows that residues in contact with the base are in general better conserved than the rest of the chain.  相似文献   

7.
The ubiquitous redox cofactors nicotinamide adenine dinucleotides [NAD and NADP] are very similar molecules, despite their participation in substantially different biochemical processes. NADP differs from NAD in only the presence of an additional phosphate group esterified to the 2′-hydroxyl group of the ribose at the adenine end and yet NADP is confined with few exceptions to the reactions of reductive biosynthesis, whereas NAD is used almost exclusively in oxidative degradations. The discrimination between NAD and NADP is therefore an impressive example of the power of molecular recognition by proteins. The many known tertiary structures of NADP complexes affords the possibility for an analysis of their discrimination. A systematic analysis of several crystal structures of NAD(P)-protein complexes show that: 1) the NADP coenzymes are more flexible in conformation than those of NAD; 2) although the protein-cofactor interactions are largely conserved in the NAD complexes, they are quite variable in those of NADP; and 3) in both cases the pocket around the nicotinamide moiety is substrate dependent. The conserved and variable interactions between protein and cofactors in the respective binding pockets are reported in detail. Discrimination between NAD and NADP is essentially a consequence of the overall pocket and not of a few residues. A clear fingerprint in NAD complexes is a carboxylate side chain that chelates the diol group at the ribose near the adenine, whereas in NADP complexes an arginine side chain faces the adenine plane and interacts with the phosphomonoester. The latter type of interaction might be a general feature of recognition of nucleotides by proteins. Other features such as strand-like hydrogen bonding between the NADP diphosphate moeties and the protein are also significant. The NADP binding pocket properties should prove useful in protein engineering and design. © 1997 Wiley-Liss Inc.  相似文献   

8.
We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid–ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.  相似文献   

9.
The molecular recognition and discrimination of very similar ligand moieties by proteins are important subjects in protein–ligand interaction studies. Specificity in the recognition of molecules is determined by the arrangement of protein and ligand atoms in space. The three pyrimidine bases, viz. cytosine, thymine, and uracil, are structurally similar, but the proteins that bind to them are able to discriminate them and form interactions. Since nonbonded interactions are responsible for molecular recognition processes in biological systems, our work attempts to understand some of the underlying principles of such recognition of pyrimidine molecular structures by proteins. The preferences of the amino acid residues to contact the pyrimidine bases in terms of nonbonded interactions; amino acid residue–ligand atom preferences; main chain and side chain atom contributions of amino acid residues; and solvent-accessible surface area of ligand atoms when forming complexes are analyzed. Our analysis shows that the amino acid residues, tyrosine and phenyl alanine, are highly involved in the pyrimidine interactions. Arginine prefers contacts with the cytosine base. The similarities and differences that exist between the interactions of the amino acid residues with each of the three pyrimidine base atoms in our analysis provide insights that can be exploited in designing specific inhibitors competitive to the ligands.  相似文献   

10.
Twenty-four structures of pyridoxal-5'-phosphate (PLP)-dependent enzymes that represent five different folds are shown to share a common recognition pattern for the phosphate group of their PLP-ligands. All atoms that interact with the phosphate group of PLP in these proteins are organized within a two-layer structure so that the first interacting layer contains from five to seven atoms and parallel with this is a second layer containing from three to seven interacting atoms. In order to identify features of the phosphate-binding site common to PLP-dependent enzymes, a simple procedure is described that assigns relative positions to all interacting atoms unambiguously, such that the networks of interactions for different proteins can be compared. On the basis of these diagrams for 24 enzyme-cofactor complexes, a detailed comparison of the two-layer structures of PLP-dependent enzymes, with both similar and different folds, was made. A majority of the structurally defined PLP-dependent proteins use the same atom types in analogous "key" positions to bind their PLP-ligands. In some instances, proteins use water molecules when a key position is unoccupied. A similar two-layer recognition pattern extends to protein recognition of at least one other, non-PLP ligand, glucosamine 6-phosphate. We refer to this three-dimensional recognition pattern as the phosphate-binding cup. In general, the phosphate-binding cup provides a very stable anchoring point for PLP. When numerous water molecules occur within the cup, however, then the phosphate group of PLP participates directly in the enzymatic reactions with inorganic phosphate replacing the water molecules of the cup. With glucosamine-6-phosphate synthase, the water molecules of the phosphate-binding cup facilitate the entry of substrate and the exit of product.  相似文献   

11.
12.
It has been known that topologically different proteins of the same class sometimes share the same spatial arrangement of secondary structure elements (SSEs). However, the frequency by which topologically different structures share the same spatial arrangement of SSEs is unclear. It is important to estimate this frequency because it provides both a deeper understanding of the geometry of protein folds and a valuable suggestion for predicting protein structures with novel folds. Here we clarified the frequency with which protein folds share the same SSE packing arrangement with other folds, the types of spatial arrangement of SSEs that are frequently observed across different folds, and the diversity of protein folds that share the same spatial arrangement of SSEs with a given fold, using a protein structure alignment program MICAN, which we have been developing. By performing comprehensive structural comparison of SCOP fold representatives, we found that approximately 80% of protein folds share the same spatial arrangement of SSEs with other folds. We also observed that many protein pairs that share the same spatial arrangement of SSEs belong to the different classes, often with an opposing N- to C-terminal direction of the polypeptide chain. The most frequently observed spatial arrangement of SSEs was the 2-layer α/β packing arrangement and it was dispersed among as many as 27% of SCOP fold representatives. These results suggest that the same spatial arrangements of SSEs are adopted by a wide variety of different folds and that the spatial arrangement of SSEs is highly robust against the N- to C-terminal direction of the polypeptide chain.  相似文献   

13.
The infrared amide bands are sensitive to the conformation of the polypeptide backbone of proteins. Since the backbone of proteins folds in complex spatial arrangements, the amide bands of these proteins result from the superimposition of vibration modes corresponding to the different types of structural motifs (alpha helices, beta sheets, etc.). Initially, band deconvolution techniques were applied to determine the secondary structure of proteins, i.e., the abundance of each structural motif in the polypeptide chain was directly related to the area of the suitable deconvolved vibration modes under the amide I band (1700-1600 cm(-1)). Recently, several multivariate regression methods have been used to predict the secondary structure of proteins as an alternative to the previous methods. They are based on establishing a relationship between a matrix of infrared protein spectra and another that includes their secondary structure, expressed as the fractions of the different structural motifs, determined from X-ray analysis. In this study, we investigated the use of the local regression method interval partial least-squares (iPLS) to seek improvements to the full-spectrum PLS and other regression methods. The local character of iPLS avoids the use of spectral regions that can introduce noise or that can be irrelevant for prediction and focuses on finding specific spectral ranges related to each secondary structure motif in all the proteins. This study has been applied to a representative protein data set with infrared spectra covering a large wavenumber range, including amides I-III bands (1700-1200 cm(-1)). iPLS has revealed new structural mode assignments related to less explored amide bands and has offered a satisfactory predictive ability using a small amount of selected specific spectral information.  相似文献   

14.
Phage display was used to identify sequences that mimic structural determinants in interleukin5 (IL5) for IL5 receptor recognition. A coiled coil stem loop (CCSL) miniprotein scaffold library was constructed with its turn region randomized and panned for binding variants against human IL5 receptor alpha chain (IL5Ralpha). Competition enzyme-linked immunosorbent assays identified CCSL-phage selectants for which binding to IL5Ralpha was competed by IL5. The most frequently selected and IL5-competed CCSL-phage contain charged residues Arg and Glu in their turn sequences, in this regard resembling a beta strand sequence in the 'CD turn' region, of IL5, that has been proposed to present a key determinant for IL5 receptor alpha chain recognition. The most dominant CCSL-phage selectant sequence, PVEGRV, contains a negative/positive charge pattern similar to that seen in the original CD turn. To test the relatedness of CCSL-phage selectant sequences to the IL5 receptor recognition epitope, PVEGRV was grafted into the sequence 87--92 of a monomeric IL5. The resulting IL5 variant, [(87)PVEGRV(92)]GM1, was able to bind to IL5Ralpha in biosensor assays, to elicit TF-1 cell proliferation and to induce STAT5 phosphorylation in TF-1 cells. The results help discern sequence patterns in the IL5 CD turn region which are key in driving receptor recognition and demonstrate the utility of CCSL miniprotein scaffold phage display to identify local IL5 mimetic sequence arrangements that may ultimately lead to IL5 antagonists.  相似文献   

15.
Yo Matsuo  Ken Nishikawa 《Proteins》1995,23(3):370-375
A protein fold recognition method was tested by the blind prediction of the structures of a set of proteins. The method evaluates the compatibility of an amino acid sequence with a three-dimensional structure using the four evaluation functions: side-chain packing, solvation, hydrogen-bonding, and local conformation functions. The structures of 14 proteins containing 19 sequences were predicted. The predictions were compared with the experimental structures. The experimental results showed that 9 of the 19 target sequences have known folds or portions of known folds. Among them, the folds of Klebsiella aerogenes urease β subunit (KAUB) and pyruvate phosphate dikinase domain 4 (PPDK4) were successfully recognized; our method predicted that KAUB and PPDK4 would adopt the folds of macromomycin (Ig-fold) and phosphoribosylanthra-nilate isomerase:indoleglycerol-phosphate synthase (TIM barrel), respectively, and the experimental structure revealed that they actually adopt the predicted folds. The predictions for the other targets were not successful, but they often gave secondary structural patterns similar to those of the experimental structures. © 1995 Wiley-Liss, Inc.  相似文献   

16.
In order to search for a common structural motif in the phosphate-binding sites of protein-mononucleotide complexes, we investigated the structural variety of phosphate-binding schemes by an all-against-all comparison of 491 binding sites found in the Protein Data Bank. We found four frequently occurring structural motifs composed of protein atoms interacting with phosphate groups, each of which appears in different protein superfamilies with different folds. The most frequently occurring motif, which we call the structural P-loop, is shared by 13 superfamilies and is characterized by a four-residue fragment, GXXX, interacting with a phosphate group through the backbone atoms. Various sequence motifs, including Walker's A motif or the P-loop, turn out to be a structural P-loop found in a few specific superfamilies. The other three motifs are found in pairs of superfamilies: protein kinase and glutathione synthetase ATPase domain like, actin-like ATPase domain and nucleotidyltransferase, and FMN-linked oxidoreductase and PRTase.  相似文献   

17.
Lattice models of proteins have been extensively used to study protein thermodynamics, folding dynamics, and evolution. Our study considers two different hydrophobic-polar (HP) models on the 2D square lattice: the purely HP model and a model where a compactness-favoring term is added. We exhaustively enumerate all the possible structures in our models and perform the study of their corresponding folds, HP arrangements in space and shapes. The two models considered differ greatly in their numbers of structures, folds, arrangements, and shapes. Despite their differences, both lattice models have distinctive protein-like features: (1) Shapes are compact in both models, especially when a compactness-favoring energy term is added. (2) The residue composition is independent of the chain length and is very close to 50% hydrophobic in both models, as we observe in real proteins. (3) Comparative modeling works well in both models, particularly in the more compact one. The fact that our models show protein-like features suggests that lattice models incorporate the fundamental physical principles of proteins. Our study supports the use of lattice models to study questions about proteins that require exactness and extensive calculations, such as protein design and evolution, which are often too complex and computationally demanding to be addressed with more detailed models.  相似文献   

18.
This paper evaluates the results of a protein structure prediction contest. The predictions were made using threading procedures, which employ techniques for aligning sequences with 3D structures to select the correct fold of a given sequence from a set of alternatives. Nine different teams submitted 86 predictions, on a total of 21 target proteins with little or no sequence homology to proteins of known structure. The 3D structures of these proteins were newly determined by experimental methods, but not yet published or otherwise available to the predictors. The predictions, made from the amino acid sequence alone, thus represent a genuine test of the current performance of threading methods. Only a subset of all the predictions is evaluated here. It corresponds to the 44 predictions submitted for the 11 target proteins seen to adopt known folds. The predictions for the remaining 10 proteins were not analyzed, although weak similarities with known folds may also exist in these proteins. We find that threading methods are capable of identifying the correct fold in many cases, but not reliably enough as yet. Every team predicts correctly a different set of targets, with virtually all targets predicted correctly by at least one team. Also, common folds such as TIM barrels are recognized more readily than folds with only a few known examples. However, quite surprisingly, the quality of the sequence-structure alignments, corresponding to correctly recognized folds, is generally very poor, as judged by comparison with the corresponding 3D structure alignments. Thus, threading can presently not be relied upon to derive a detailed 3D model from the amino acid sequence. This raises a very intriguing question: how is fold recognition achieved? Our analysis suggests that it may be achieved because threading procedures maximize hydrophobic interactions in the protein core, and are reasonably good at recognizing local secondary structure. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share approximately 20% and approximately 25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology.  相似文献   

20.
Four adenophostin analogues lacking the adenine moiety were subjected to 31P- and 1H-NMR titrations in order to determine the acid-base behaviour of the individual ionisable groups of the molecules and the complex interplay of intramolecular interactions resulting from the protonation process. For the two trisphosphorylated compounds, the curve pattern of the phosphorus nuclei corresponds to the superimposition of the titration curves of a monophosphorylated polyol and a polyol carrying two vicinal phosphates, suggesting that the two phosphate moieties behave independently. Also, the general shape of 1H-NMR titration curves of the studied compounds is very close to that of adenophostin A, indicating that the adenine moiety does not specifically interact with the phosphorylated sugar moieties. The curves show, however, that both trisphosphorylated compounds adopt slightly different preferential conformations which could contribute to explain the difference in their affinity for Ins(1,4,5)P3 receptor. Their macroscopic as well as the microscopic protonation constants are higher than those of adenophostin A, indicating that the adenine moiety plays a base-weakening effect on the phosphate groups. Further analysis of the microscopic protonation constants confirms that the compound whose conformation is the closest to that of adenophostin A also shows the highest biological activity. The two bisphosphorylated analogues studied behave very similarly, suggesting that the deletion of the hydroxymethyl group on the pentafuranosyl ring only weakly influences the protonation process of the phosphate groups that bear the glucopyranose moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号