首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our observations indicate the vertical distribution of zooplankton and its seasonal changes in Dubník II reservoir (Slovakia) are determined mainly by the thermal regime of the reservoir, by transparency, and by fish and invertebrate predation. During periods of circulation, zooplankton vertical distribution in the whole water column was more homogeneous, whilst during summer temperature stratification zooplankton concentrated in the epilimnion — rotifers in higher layers than crustaceans. During summer stagnation a steep thermal gradient occurred at the boundary of the epi-and hypolimnion and low temperature and low dissolved oxygen in hypolimnion offered a refuge for Chaoborus flavicans larvae against fish, enabling coexistence of vertebrate and invertebrate predation. This evidence supports our previous findings concerning dominance of rotifers in zooplankton and representation of crustaceans by small-bodied species in the study reservoir. Steep thermal gradient and the presence of Chaoborus larvae caused very low zooplankton abundance in the lower part of the water column and a reduction of cladocerans refuges against fish to layers of thermocline or closely under thermocline where Daphnia cucullata and Daphnia parvula were found. Our previous assumptions about the high density of zooplanktivorous fish in Dubník II reservoir are supported by the fact that these small cladocerans are represented by smaller individuals in the upper layers and bigger individuals in deeper layers.  相似文献   

2.
Density and size structure changes of natural daphniids populations were studied in enclosures with a different level of fish predation. Daphnia pulicaria was totaly removed in high predation variants, and the differences of the mean body length both in adults and juveniles are apparent between low predation enclosure and enclosure without fish. Daphnia galeata was replaced by D. magna and D. pulicaria in the enclosure without fish. The decline of densities and the substantial (30–50%) and fast (during 12 days) shift of mean body length both in adults and juveniles of D. galeata was induced by the fish (carp fry) introduction to the high predation enclosures.  相似文献   

3.
Food limitation was tested in the laboratory by individual growth and reproduction of two cladoceran species, Ceriodaphnia richardi and Daphnia gessneri, from the shallow tropical Brazilian Lake Monte Alegre. The cladocerans were fed cultivated green alga Scenedesmus spinosus in concentrations of 0.20, 0.10, 0.05, and 0.025 mg C l−1. Higher biomass and growth rates occurred in the two highest-food concentrations; the two lowest ones negatively affected clutch size and first reproduction. The threshold food concentration is lower than 0.025 mg C l−1 and the incipient limiting level is a value between 0.10 and 0.20 mg C l−1. The largest species, D. gessneri, was more sensitive to low food concentrations. The effects of low and high temperatures (19 and 27°C) were evaluated by life table experiments with three cladocerans from the lake—Daphnia ambigua, D. gessneri, and Moina micrura—with no food limitation (1 mg C l−1 of S. spinosus). Higher population growth rates for the three species were found at 27°C; better performance in most life table parameters was observed for the former two species at the highest temperature, D. gessneri being the most sensitive to the lowest temperature. There are indications that temperature is an important abiotic factor that constrains populations of cladocerans for a short period in winter in the lake, when temperature decreases to 18–19°C. However, its influence cannot be separated from a biotic factor such as food, whose effect is stronger in the cool season, when concentrations are lower and contribution of inedible algae is relatively higher.  相似文献   

4.
In spring and early summer, a small population of the large-bodied Daphnia pulicaria coexists with a much larger population of the medium-sized hybrid Daphnia galeata × hyalina in the epilimnion of Lake Maarsseveen (The Netherlands). When large shoals of juvenile perch (Perca fluviatilis) appear in the open water, both species start to migrate vertically. Since D. pulicaria has a larger body-size than D. galeata × hyalina, and is therefore competitive dominant over the hybrid, it is unlikely that both species interact via their common food resource, but they react both to fish predation. However, since they differ in size, and therefore in vulnerability for fish predation, both species adopt different strategies. The smaller bodied, and less vulnerable D. galeata × hyalina exhibits diel vertical migration ascending to the surface at dusk, and staying there during the night. In this way, benefiting from the higher temperatures of the surface layers. In contrast, the large-bodied, and more vulnerable D. pulicaria selects the deep cold hypolimnion water layers as refuge against fish predation. In this way it benefits from a safe habitat, free from fish predators, but on the other hand suffers from low water temperatures, which decrease its fitness. It is likely that the relatively higher temperature in the upper water layers serves as a proximate factor for the downward migration of D. pulicaria.  相似文献   

5.
Neither Daphnia hyalina, Daphnia cristata, nor Daphnia cucullata vertically migrated in Lake Mikoajskie and Lake Majcz. We suggest that even under strong fish predation pressure there is no reason to migrate when seston is relatively homogenously distributed throughout the water column.  相似文献   

6.
Little Mere (Cheshire) is a small (2.7 ha) and shallow (average depth 0.7 m) fertile lake in Cheshire, UK. Nymphaeids cover almost 40 % of its entire surface during the growing season (April to October) and practically all the rest is covered by a mixed community of submerged plants. The lake was intensively sampled for plant-associated Cladocera and zooplankters from April 1998-April 2000. Samples were collected at five sites across the lake, three of them located within lily beds, the other two over submerged plant beds of mixed composition. Specific sampling techniques were developed for floating lily leaves, petioles, submerged plants and water. Significant horizontal differences were identified for most cladoceran species, both open-water and plant-associated, for chydorid periphyton scrapers and for filter-feeders. Daphnia hyalina (L.) and Ceriodaphnia sp were significantly more abundant in lily beds than in more open water in both growing seasons, suggesting lily beds are an effective refuge against fish predation. Size-structure and egg-ratio data support this contention. Egg-ratio models were examined for Daphnia hyalina and Simocephalus vetulus (O.F. Müller), a plant-associated cladoceran. The fertility of S. vetulus in lily beds was generally high throughout growing seasons. The construction of egg-ratio models for this species was hampered by their generally very patchy distributions.  相似文献   

7.
Summary This study examined the long term effects of predation by larvae of the midge Chaoborus and simulated fish predation on experimental Daphnia longispina populations. Chaoborus predation, relative to fish predation, led to populations composed of larger individuals as a whole, larger egg-bearing individuals, and a larger primiparous instar. Daphnia retained helmets beyond the first instar in response to the presence of Chaoborus. Both types of predation, relative to predator-free controls, reduced prey population size and rates of increase, but increased population death rates. The reduction in population size due to predation led to increased resource availability for individuals remaining in the populations and increased individual fecundity in the predation treatments. The differences noted between the Chaoborus, fish, and control treatments increased with predation intensity.  相似文献   

8.
We demonstrate the effect of fish predation on genotype frequencies in a laboratory population composed of two Daphnia magna clones, with historically contrasting exposures to fish predation. The two clones differed in their responsiveness to predation via differential avoidance/escape behavior. The clone which coexists with fish in nature is more responsive to the presence of a fish predator, while the clone not exposed to fish predation does not exhibit the defensive reaction. Fish caused a rapid (within 18 h) and significant shift in Daphnia clonal composition, from 1:1 to 8:1, in favor of the responsive clone. Genotype-specific defensive abilities (modus defendi) can contribute greatly to the phenomenon of genotype replacement under selective predation.  相似文献   

9.
1. Visually foraging fish typically exclude large zooplankton from clear‐water lakes and reservoirs. Do fish have the same effect in turbid waters, or does turbidity provide a refuge from visual predation? 2. To test the hypothesis that fish exclude large zooplankton species from turbid sites, I searched for populations of medium or large Daphnia species in turbid, fish‐containing reservoirs of south‐central Oklahoma and north‐central Texas, U.S.A., and surveyed the literature for accounts of Daphnia species in turbid habitats worldwide. 3. Only small Daphnia species and the exuberantly spined Daphnia lumholtzi were detected in the turbid reservoirs. The Daphnia species in the reservoirs are smaller than other Daphnia species that occur in the area but were not detected. An extensive survey of the literature suggests that large Daphnia may be found in the lakes of extreme turbidity [Secchi disk depth (SD) < 0.2 m] but that only small and spiny Daphnia are likely to occur in more typical turbid locations (1.0 m > SD > 0.2 m) unless some additional factor reduces the influence of fish predation in such sites. 4. The field samples from Texas and Oklahoma together with the literature review suggest that the effect of visually foraging planktivorous fish on the size structure of turbid‐water zooplankton communities may often be as strong or even stronger than the effect of fish on clear‐water zooplankton communities.  相似文献   

10.
Predator induced life-history shifts in a freshwater cladoceran   总被引:11,自引:0,他引:11  
Herwig Stibor 《Oecologia》1992,92(2):162-165
Summary Life-history theory predicts that maturity and resource allocation patterns are highly sensitive to selective predation. Under reduced adult survival, selection will favour genotypes capable of reproducing earlier, at a smaller size and with a higher reproductive effort. When exposed to water that previously held fish, (size selective predators which prefer larger Daphnia), individuals of Daphnia hyalina reproduced earlier, at a smaller size and had a higher reproductive investment. Hence the prey was able to switch its life history pattern in order to become less susceptible to predation by a specific predator. The cue that evokes the prey response is a chemical released by the predator.  相似文献   

11.
The influence of zooplanktivorous fishes on the plankton community and water quality of Americana Reservoir, Brazil was studied experimentally in 4 floating enclosures during the dry seasons (July–September) of 1982 and 1983. Two enclosures were stocked with adult fish (Astyanax bimaculatus in 1982;A. fasciatus in 1983) at near maximal densities measured in the reservoir upper surface waters (35 m–2) and two were fish-free during each experiment lasting about one month. Marked differences were evident between the fish and fish-free enclosures after a 2–3 week period in each experiment, particularly with respect to water transparency, phytoplankton biomass, and zooplankton abundance as well as species and size composition. By the end of each experiment water transparencies were lower and phytoplankton biomass higher in the fish enclosures compared to those without fish. Also at that time Rotifera were the prominent zooplankters in the fish enclosures and Cladocera in the fish-free ones. Larger or more conspicuous species of Cladocera asDaphnia gessneri, D. ambigua, andMoina micrura were present in the fish-free enclosures but not in the fish enclosures. The interactions between fish predation, zooplankton grazing, phytoplankton biomass and water quality conditions are discussed in relation to eutrophication of a tropical aquatic ecosystem.  相似文献   

12.
Habitat features influence the ecological interactions and spatial distribution of fish species. For example, water transparency and macrophyte cover, as well as their interaction, can strongly influence predation risk and mortality. Tethering trials were conducted in Lake St. Pierre (Quebec, Canada) to assess the effects of water transparency and macrophyte cover on the mortality risk of eight abundant fish species; Brown Bullhead (Ameiurus nebulosus), Mooneye (Hiodon tergisus), Emerald Shiner (Notropis atherinoides), Golden Shiner (Notropis crysoleucas), Blacknose Shiner (Notropis heterolepis), Spottail Shiner (Notropis hudsonius), Trout-perch (Percopsis omiscomaycus), and Yellow Perch (Perca flavescens). Kaplan–Meier survival curves showed that mortality risk varied substantially among three groups of species having high, intermediate, or low survival rates. Species with spines appeared to have higher survival rates, consistent with the notion that spines deter predators. Cox regression models showed that mortality risk for six of the eight species was influenced by water transparency or an interaction of transparency with macrophyte cover. Mortality risk was generally greatest at low transparency. Variation in water transparency may generate spatial heterogeneity in fish abundance, either through direct effects, such as local reduction in prey numbers by predation, or indirect effects, such as behavioural avoidance of risky areas by prey.  相似文献   

13.
Summary We investigate how body size of two coexisting Daphnia species varies among 7 lakes that represent a gradient of predation risk. The two species segregate vertically in stratified lakes; D. galeata mendotae is typically smaller and more eplimnetic than D. pulicaria. The extent of vertical habitat partitioning, however, varies seasonally within and among lakes in apparent response to predation intensity by epilimnetic planktivorous fishes. Daphnia pulicaria uses the epilimnion at low levels of fish predation but is restricted to the hypolimnion under high fish predation, whereas D. galaeta mendotae always utilizes the epilimnion. The species display contrasting patterns of genetic variation in neonate size and size at maturity. D. pulicaria is larger in lakes with higher fish and Chaoborus densities whereas D. galeata mendotae is smaller. This contrast in body size in lakes with high predation is associated with greater habitat segregation in those lakes. In lakes with low predation risk, the two species are similar in body size at birth and maturity.Authorship order alphabetical  相似文献   

14.
Invertebrate predation on zooplankton was investigated in mesocosms in the shallow tropical Lake Monte Alegre, São Paulo State, Brazil, in the summer of 1999. Two treatments were applied: one with natural densities of prey and the predators Chaoborus brasiliensis and the water mite Krendowskia sp. (Pr+), and another without predators (Pr-). Three enclosures (volume: 6.6 m3 of water per enclosure) per treatment were installed in the sediment of the deepest area of the lake (5.0 m). At the beginning, Chaoborus larvae were present in Pr- enclosures, because of technical difficulties in preventing their entrance, but they virtually disappeared in the course of the experiment. Water mites were almost absent in Pr- enclosures. Chaoborus predation negatively influenced the Daphnia gessneri population, but not the populations of the copepods Tropocyclops prasinus and Thermocyclops decipiens and the rotifers Keratella spp. Death rates of Daphnia were generally significantly higher in the Pr+ treatment; Daphnia densities increased after the disappearance of Chaoborus in Pr-. Copepod losses to predation in the experiment may be compensated by higher fecundity, shorter egg development time, and lower pressure on egg-bearing females, resulting in a lower susceptibility to Chaoborus predation. The predation impact of water mite on microcrustaceans and rotifers in the experiment was negligible.  相似文献   

15.
Diurnal vertical migration (DVM) of Daphnia hyalina in Lake Bled was most intense during summer stratification. The extent of DVM varied with the size of the animal and its reproductive state. Migration distances were shortest in immature specimens and longest in ovigerous females. During daytime, ovigerous females stayed deeper in the water column than females without ova or immatures. The daytime temperature of water at the median depth of the ovigerous females did not exceed 10 °C, even in the warmest season. At night they migrated upward to an environment which was warmer by as much as 9 °C.Laboratory observations indicate that specimen's size and water temperature determine the velocity of passive sinking, such that morning descent of the different groups of Daphnia can be explained by passive sinking alone.Our hypothesis is that the distribution of different groups of D. hyalina in Lake Bled is influenced by two types of predators: fish (Perca fluviatilis L. and Rutilus rutilus (L.)) and larvae of Chaoborus flavicans (Meig.), the latter appearing in the epilimnion during the night. Fish predation has a key-role at the beginning of thermal stratification. Supposing that in spring the gene pool of Daphnia consists of a mix of different genotypes, distributed at different depths during the day, fish predation combined with a presence of fish chemicals favored genotypes with a lower day-depth during the spring/summer period.  相似文献   

16.
In the Midi-Pyrénées region (southwest France), the increasing number of gravel pits has allowed the wintering of numerous species of waterbirds such as Great Cormorants (Phalacrocorax carbo). The debate about cormorant predation on fish stock has been sufficiently strong to have resulted in reductions in cormorant numbers by control shooting. In this context, cormorants were studied during winters 1996/1997 and 1997/1998 at two gravel pit sites in the Garonne floodplain. Human disturbances and fish densities were found to be the main parameters determining the abundance of fishing cormorants. This work will help to prompt further research and the development of a management strategy for this species.  相似文献   

17.
The cladocerans Ceriodaphnia richardi, Daphnia ambigua, D. gessneri and Moina micrura were used to access food quality of Lake Monte Alegre’s seston. Experiments were carried out in summer and autumn as growth assays with lake seston only (control) and seston supplemented with phosphate, fatty acids or Synechococcus, and Scenedesmus. In summer, high C:P ratios in seston suggested strong phosphorus limitation, however, contrary to the expectations of stoichiometric theory, the addition of phosphate to seston did not improve cladoceran growth. Addition of PUFA increased growth rates and clutch size of D. gessneri, suggesting a possible deficiency in essential fatty acids in summer. Addition of Scenedesmus increased significantly growth rates of the cladocerans D. gessneri and C. cornuta, suggesting energy limitation in summer. In autumn, C:P ratios were lower than in summer, but still above the threshold ratio for Daphnia. At this time, addition of phosphate increased significantly growth rates of Daphnia suggesting strong P limitation, especially in D. gessneri. However, energy limitation was still important in autumn, as suggested by a further increase in growth rates in +Syn and +Sce treatments. Energy limitation was especially strong for Moina micrura, which is a fast-growing species, with high P content. Algal digestion resistance is a plausible hypothesis for energy limitation, since carbon concentrations in both seasons were above incipient limiting levels. These results show that the seston C:P ratio was not a consistent predictor of cladoceran P limitation and that factors other than P and energy limitation seem to be also important, such as PUFA or other biochemical factors. An erratum to this article is available at .  相似文献   

18.
M. A. Leibold 《Oecologia》1991,86(4):510-520
Summary Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.  相似文献   

19.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

20.
After examining numerous water samples of 19 lakes and reservoirs in Venezuela, only two species of Daphnia were found: D. laevis (in colder, high altitude lakes) and D. gessneri. This observation supports the theory of the scarcity of Daphnia species in tropical inland waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号