首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dinitrogenase from a nifV mutant of Klebsiella pneumoniae contains an altered form of iron-molybdenum cofactor (FeMoco) that lacks a biologically active homocitric acid molecule. Change in the composition of FeMoco led to substantial variation in the kinetics of nitrogenase action. The KmS of the mutant enzyme for N2 and N2O were 0.244 and 0.175 atm (24,714 and 17,726 kPa), respectively. The km for N2 was higher and the Km for N2O was lower than that for the wild-type enzyme. The mutant enzyme was ineffective in N2 fixation, in N2O reduction, and in HD formation, as indicated by the low Vmax of these reactions with saturating levels of substrate and under conditions of saturating electron flux. These observations provide further support for the concept that N2, N2O, and D2 interact with the same form of dinitrogenase. H2 evolution by the mutant enzyme is only partially inhibited by CO. Observation that different numbers of electrons are stored in CO-inhibited than in noninhibited dinitrogenase before H2 is released suggests that the mutant enzyme has more sites responsible for H2 evolution than the wild-type enzyme, whose H2 evolution is not inhibited by CO.  相似文献   

2.
Nitrogenase of Klebsiella pneumoniae nifV mutants.   总被引:7,自引:2,他引:5       下载免费PDF全文
The MoFe protein of nitrogenase from Klebsiella pneumoniae nifV mutants, NifV- Kp1 protein, in combination with the Fe protein from wild-type cells, catalysed CO-sensitive H2 evolution, in contrast with the CO-insensitive reaction catalysed by the wild-type enzyme. The decrease in H2 production was accompanied by a stoicheiometric decrease in dithionite (reductant) utilization, implying that CO was not reduced. However, CO did not affect the rate of phosphate release from ATP. Therefore the ATP/2e ratio increased, indicating futile cycling of electrons between the Fe protein and the MoFe protein. The inhibition of H2 evolution by CO was partial; it increased from 40% at pH6.3 to 82% at pH 8.6. Inhibition at pH7.4 (maximum 73%) was half-maximal at 3.1 Pa (0.031 matm) CO. The pH optimum of the mutant enzyme was lower in the presence of CO. Steady-state kinetic analysis of acetylene reduction indicated that CO was a linear, intersecting, non-competitive inhibitor of acetylene reduction with Kii = 2.5 Pa and Kis = 9.5 Pa. This may indicate that a single high-affinity CO-binding site in the NifV- Kp1 protein can cause both partial inhibition of H2 evolution and total elimination of acetylene reduction. Various models to explain the data are discussed.  相似文献   

3.
Citrate transport in Klebsiella pneumoniae   总被引:5,自引:0,他引:5  
Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler [4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.  相似文献   

4.
Control of nitrogenase synthesis in Klebsiella pneumoniae   总被引:24,自引:0,他引:24  
  相似文献   

5.
The x-ray crystal structure of NifV(-) Klebsiella pneumoniae nitrogenase MoFe protein (NifV(-) Kp1) has been determined and refined to a resolution of 1.9 A. This is the first structure for a nitrogenase MoFe protein with an altered cofactor. Moreover, it is the first direct evidence that the organic acid citrate is not just present, but replaces homocitrate as a ligand to the molybdenum atom of the iron molybdenum cofactor (FeMoco). Subsequent refinement of the structure revealed that the citrate was present at reduced occupancy.  相似文献   

6.
7.
The entire coding region of chlL, an essential chloroplast gene required for chlorophyll biosynthesis in the dark in Chlamydomonas reinhardtii, was precisely replaced by either the Klebsiella pneumoniae nifH (encoding the structural component of nitrogenase Fe protein) or the Escherichia coli uidA reporter gene encoding beta-glucuronidase. Homoplasmic nifH or uidA transformants were identified by Southern blots after selection on minimal medium plates for several generations. All the uidA transformants had the "yellow-in-the-dark" phenotype characteristic of chlL mutants, whereas homoplasmic nifH transformants exhibited a partial "green-in-the-dark" phenotype. NifH protein was detected in the nifH transformants but not in the wild-type strain by Western blotting. Fluorescence emission measurements also showed the existence of chlorophyll in the dark-grown nifH transformants, but not in the dark-grown uidA transformants. The nifH transplastomic form of C. reinhardtii that lacks the chlL gene can still produce chlorophyll in the dark, suggesting that the nifH product can at least partially substitute for the function of the putative "chlorophyll iron protein" encoded by chlL. Thus, introducing nitrogen fixation gene directly into a chloroplast genome is likely to be feasible and providing a possible way of engineering chloroplasts with functional nitrogenase. Notably, to introduce foreign genes without also introducing selective marker genes, a novel two-step chloroplast transformation strategy has been developed.  相似文献   

8.
9.
Nitrogenase biosynthesis in Klebsiella pneumoniae including mutant strains, which produce nitrogenase in the presence of NH+4 (Shanmugam, K.T., Chan, Irene, and Morandi, C. (1975) Biochim. Biophys. Acta 408, 101--111) is repressed by a mixture of L-amino acids. Biochemical analysis shows that glutamine synthetase activity in strains SK-24, SK-28, and SK-29 is also repressed by amino acids, with no detectable effect on glutamate dehydrogenase. Among the various amino acids, L-glutamine in combination with L-aspartate was found to repress nitrogenase biosynthesis completely. In the presence of high concentrations of glutamine (1 mg/ml) even NH+4 repressed nitrogenase biosynthesis in the strains SK-27, SK-37, SK-55 and SK-56. Under these conditions, increased glutamate dehydrogenase activity was also detected. Physiological studies show that nitrogenase derepressed strains are unable to utilize NH+4 as sole source of nitrogen for biosynthesis of glutamate for biosynthesis of glutamate, whereas back mutations leading to NH+4 utilization results in sensitivity to repression by NH+4. These findings suggest that amino acids play an important role as regulators of nitrogen fixation.  相似文献   

10.
11.
12.
Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae   总被引:27,自引:19,他引:8  
Yoch, D. C. (South Dakota State University, Brookings), and R. M. Pengra. Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J. Bacteriol. 92:618-622. 1966.-The effect of exogenous amino acids and the free amino acid pool on the synthesis of the nitrogenase system of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes M5al) was investigated. When an actively N(2)-fixing culture was used to inoculate a medium containing a limiting concentration of NH(4) (+), an induction lag period was observed. When either a single amino acid or a mixture of amino acids was substituted at the same nitrogen concentration, growth was uninterrupted by the induction period. It appears that a step or steps in the formation of the nitrogenase system are repressed by NH(4) (+) and are not affected by amino acid N. The amino acids, far from repressing formation of nitrogenase as does NH(4) (+), actually stimulate its formation. It appears that both free and amino nitrogen are used simultaneously. The amino acids that served concomitantly with N(2) as a source of nitrogen were: aspartic acid, serine, threonine, leucine, and histidine. Of these amino acids, it was shown that aspartic acid is readily taken up by the cells. Of the amino acids not serving as an immediate nitrogen source, isoleucine is not taken up by the cells. The free amino acid pool of the cells was measured at the onset and termination of the induction period. Ninhydrin-positive material in the amino acid pool was depleted by 35% during the induction period.  相似文献   

13.
When the iron-molybdenum cofactor (FeMoco) was extracted from the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae and combined with the FeMoco-deficient MoFe protein from a nifB mutant, the resultant MoFe protein exhibited the NifV phenotype, i.e. in combination with wild-type Fe protein it exhibited poor N2-fixation activity and its H2-evolution activity was inhibited by CO. These data provide strong evidence that FeMoco contains the active site of nitrogenase. The metal contents and e.p.r. properties of FeMoco from wild-type and nifV mutants of K. pneumoniae are very similar.  相似文献   

14.
R Z Jin  R G Forage    E C Lin 《Journal of bacteriology》1982,152(3):1303-1307
With dihydroxyacetone as the sole source of carbon and energy, constitutively synthesized glycerol kinase of the glp system supported aerobic growth of Klebsiella pneumoniae mutants lacking the inducible dihydroxyacetone kinase of the dha system. Glycerol kinase had an apparent Km of 0.01 mM for its physiological substrate and 1 mM for its surrogate substrate. However, the growth rate on dihydroxyacetone of cells relying on glycerol kinase increased with the concentration of the carbon and energy source up to 50 mM, suggesting that permeation is rate limiting.  相似文献   

15.
A binary plasmid system was used to produce nitrogenase components in Escherichia coli and subsequently to define a minimum set of nitrogen fixation (nif) genes required for the production of the iron-molybdenum cofactor (FeMoco) reactivatable apomolybdenum-iron (apoMoFe) protein of nitrogenase. The active MoFe protein is an alpha 2 beta 2 tetramer containing two FeMoco clusters and 4 Fe4S4 P centers (for review see, Orme-Johnson, W.H. (1985) Annu. Rev. Biophys. Biophys. Chem. 14, 419-459). The plasmid pVL15, carrying a tac-promoted nifA activator gene, was coharbored in E. coli with the plasmid pGH1 which contained nifHDKTYENXUSVWZMF' derived from the chromosome of the nitrogen fixing bacterium Klebsiella pneumoniae. The apoMoFe protein produced in E. coli by pGH1 + VL15 was identical to the apoprotein in derepressed cells of the nifB- mutant of K. pneumoniae (UN106) in its electrophoretic properties on nondenaturing polyacrylamide gels as well as in its ability to be activated by FeMoco. The constituent peptides migrated identically to those from purified MoFe protein during electrophoresis on denaturing gels. The concentrations of apoMoFe protein produced in nif-transformed strains of E. coli were greater than 50% of the levels of MoFe protein observed in derepressed wild-type K. pneumoniae. Systematic deletion of individual nif genes carried by pGH1 has established the requirements for the maximal production of the FeMoco-reactivatable apoMoFe protein to be the following gene products, NifHDKTYUSWZM+A. It appears that several of the genes (nifT, Y, U, W, and Z) are only required for maximal production of the apoMoFe protein, while others (nifH, D, K, and S) are absolutely required for synthesis of this protein in E. coli. One curious result is that the nifH gene product, the peptide of the Fe protein, but not active Fe protein itself, is required for formation of the apoMoFe protein. This suggests the possibility of a ternary complex of the NifH, D, and K peptides as the substrate for the processing to form the apoMoFe protein. We also find that nifM, the gene which processes the nifH protein into Fe protein (Howard, K.S., McLean, P.A., Hansen, F. B., Lemley, P.V., Kobla, K.S. & Orme-Johnson, W.H. (1986) J. Biol. Chem. 261, 772-778) can, under certain circumstances, partially replace other processing genes (i.e. nifTYU and/or WZ) although it is not essential for apoMoFe protein formation. It also appears that nifS and nifU, reported to play a role in Fe protein production in Azotobacter vinelandii, play no such role in K. pneumoniae, although these genes are involved in apoMoFe formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Mol- mutants of Klebsiella pneumoniae requiring high levels of molybdate for nitrogenase and nitrate reductase activity were characterized. The effects of mol mutations on nitrogenase activity were very similar to those caused by nifQ mutations. Mol- mutants of K. pneumoniae appear to be equivalent to ChlD- mutants of Escherichia coli.  相似文献   

17.
We report the complete DNA sequence of the Klebsiella pneumoniae nifH gene, the gene which codes for component 2 (Fe protein or nitrogenase reductase) of the nitrogenase enzyme complex. The amino acid sequence of the K. pneumoniae nitrogenase Fe protein is deduced from the DNA sequence. The K. pneumoniae Fe protein contains 292 amino acids, has a Mr = 31,753, and contains 9 cysteine residues. We compare the amino acid sequence of the K. pneumoniae protein with available amino acid sequence data on nitrogenase Fe proteins from two other species, Clostridium pasteurianum and Azotobacter vinelandii. The C. pasteurianum Fe protein, for which the complete sequence is known, shows 67% homology with the K. pneumoniae Fe protein. Extensive regions of strong conservation (90-95%) are found, while other regions show relatively poor conservation (30-35%). It is suggested that these strongly conserved regions are of special importance to the function of this enzyme, and the findings are discussed in the light of evolutionary theories on the origin of nif genes.  相似文献   

18.
Temperature sensitivity of the regulatory protein coded by nifA prevents the organism from utilizing N2 at 37 degrees C. The purpling of 6-cyanopurine, a function of nifA expression, also is thermolabile.  相似文献   

19.
Azotobacter vinelandii DJ71, which contains a mutation in the nifV gene, was derepressed for nitrogenase in the presence of homocitrate. When dinitrogenase was isolated from this culture, it was found to be identical to the wild-type dinitrogenase. However, when the same NifV- strain was derepressed in the presence of erythrofluorohomocitrate, a homocitrate analog which produces a nitrogenase with wild-type properties in vitro, the isolated dinitrogenase was characteristic of the NifV- enzyme. These data show that homocitrate, but not fluorohomocitrate, is utilized by NifV- mutant cells. Fluorohomocitrate does not inhibit the uptake of homocitrate because the wild-type phenotype resulted when both compounds were added to the medium during nitrogenase derepression. Homocitrate lactone failed to cure the NifV- phenotype.  相似文献   

20.
Effects of very low concentrations of dissolved O2 on nitrogenase activity in Klebsiella pneumoniae were studied in a stirred chamber system which enabled simultaneous measurements of steady-state O2 concentrations, O2 consumption and C2H2 reduction. A strain carrying a chromosomal nifH::lac fusion as well as the Nif+ plasmid pRD1, expressed nitrogenase activity with 80 nM-O2, a concentration known to inhibit nifH::lac expression by about 50% Thus nitrogenase activity in vivo was no more sensitive to O2 than expression of nifH::lac. When compared with anaerobic treatments, dissolved O2 near 30 nM apparently stimulated nitrogenase derepression and enhanced the activity of nitrogenase synthesized anaerobically. Thus, in this organism, N2 fixation occurs in microaerobic as well as anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号