首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because endothelial cells are fundamental to the maintenance of the functional integrity of the vascular wall, endothelial modifications in altered gravity conditions might offer some insights into the mechanisms leading to circulatory impairment in astronauts. We cultured human endothelial cells in a dedicated centrifuge (MidiCAR) to generate hypergravity and in two different devices, namely the Rotating Wall Vessel and the Random Positioning Machine, to generate hypogravity. Hypogravity stimulated endothelial growth, did not affect migration, and enhanced nitric oxide production. It also remodeled the actin cytoskeleton and reduced the total amounts of actin. Hypergravity did not affect endothelial growth, markedly stimulated migration, and enhanced nitric oxide synthesis. In addition, hypergravity altered the distribution of actin fibers without, however, affecting the total amounts of actin. A short exposure to hypergravity (8 min) abolished the hypogravity induced growth advantage. Our results indicate that cytoskeletal alterations and increased nitric oxide production represent common denominators in endothelial responses to both hypogravity and hypergravity.  相似文献   

2.
Xenopus laevis A6 cells, which are cloned epithelial cells from the Xenopus kidney, differentiate into a dome structure when the cells reach confluence. We investigated the gravitational responses of A6 cellular motility during normal differentiation and differentiation under hypergravity conditions using centrifugation (1-100 x g). Progression to dome formation was analyzed by time-lapse micrography. Dome formation and increased expression of Na(+)/K(+)-adenosine triphosphatase were used as markers of differentiation. Interestingly, a high rate of cellular proliferation was observed at a low level of hypergravity (5 x g). Despite this, there was no difference in the time to dome formation between the control cells at primary cell density and those that differentiated under hyper- or hypogravity conditions. In conclusion, this experiment on amphibian cells revealed that the proliferation of A6 cells was strongly affected by gravity conditions, but the differentiation step appears to be controlled by an intra- or intercellular clock.  相似文献   

3.
The aim of the present study was to investigate the effects of abnormal gravity on human mesenchymal stem cells (hMSCs). Strong magnetic field and magnetic field gradient generate a magnetic force that can add to or subtract from the gravitational force. In this study, this is defined as a high-magneto-gravitational environment (HMGE). The HMGE provides three apparent gravity levels, i.e. hypogravity (μg), hypergravity (2g) and normal gravity with strong magnetic field (1g) conditions. After hMSCs were subject to HMGE for 12 h, the proliferation, morphology, structure and apoptosis were investigated. Results showed that the proliferation of hMSCs was inhibited under μg condition. The abnormal gravity induced morphologic characteristics of apoptosis cells, such as cell shrinkage, membrane blebbing, nuclear chromatin condensation and margination, decreased cell viability, and increased caspase-3/7 activity. The rate of apoptosis under μg condition is up to 56.95%. The F-actin stress fibers and microtubules were disrupted under abnormal gravity condition. Under μg-condition, the expression of p53 at mRNA and protein levels was up-regulated more than 9- and 6 folds, respectively. The Pifithrin-α, an specific inhibitor of p53, inhibited the apoptosis and prevented the disruption of cytoskeleton induced by abnormal gravity. These results implied that hMSCs were sensitive to abnormal gravity and exhibited classic apoptotic features, which might be associated with p53 signaling.  相似文献   

4.
Rösner H  Wassermann T  Möller W  Hanke W 《Protoplasma》2006,229(2-4):225-234
Summary. Human SH-SY5Y neuroblastoma cells were used to study the effects of altered gravity on the actin and microtubule cytoskeleton dynamics. A cholinergic stimulation of the cells during a 6 min period of changing gravity (3 parabolas) resulted in an enhanced actin-driven protrusion of evoked lamellipodia. Likewise, the spontaneous protrusive activity of nonactivated cells was promoted during exposure to changing gravity (6 up to 31 parabolas). Ground-based experiments revealed a similar enhancement of the spontaneous and evoked lamellar protrusive activity when the cells were kept at 2 g hypergravity for at least 6 min. This gravity response was independent of the direction of the acceleration vector in respect to the cells. Exposure of the cells to “simulated weightlessness” (clinorotation) had no obvious influence on this type of lamellar actin cytoskeleton dynamics. A 20 min exposure of the cells to simulated weightlessness or to changing gravity (6 to 31 parabolas) – but not to 2 g (hypergravity, centrifugation) – resulted in an altered arrangement of microtubules indicated by bending, turning, and loop formation. A similar altered arrangement was shown by microtubules which had polymerized into lamellipodia after release from a taxol block at simulated weightlessness (clinorotation) or during changing gravity (5 parabolas). Our data suggest that in human SH-SY5Y neuroblastoma cells, microgravity affects the dynamics and spatial arrangement of microtubules but has no influence on the Rac-controlled lamellar actin cytoskeleton dynamics and cell spreading. The latter, however, seems to be promoted at hypergravity. Correspondence and reprints: Cell and Developmental Neurobiology, Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Federal Republic of Germany.  相似文献   

5.
The effect of mechanical stress (centrifugation) on the inductionof nitric oxide (NO) formation and DNA fragmentation was investigatedin leaf cells of Arabidopsis thaliana. Centrifuged and non-centrifugedleaves from wild-type and nitrate reductase (NR)nia1, nia2 doublemutant, defective in the assimilation of nitrate, were labelledwith 4,5-diaminofluorescein diacetate (DAF-2 DA) to visualizein vivo NO production. After these treatments, DNA fragmentationwas detected by the terminal deoxynucleotidyl transferase-mediateddUTP nick end in situ labelling (TUNEL) method. Exposure toan NO-releasing compound, sodium nitroprusside (SNP) mimickedthe cell response to centrifugation (20 g). The involvementof endogenous NO as a signal in mechanical stress and in DNAfragmentation was confirmed by inhibition of NO production usinga nitric oxide synthase (NOS) inhibitor viz. NG-monomethyl-L -arginine (L -NMMA). These results indicate that NOS-likeactivity was present in A. thaliana leaves and was increasedby mechanical stress. The effect of leaf-wounding on nitricoxide production was identical to that of centrifugation. Experimentswith A. thaliana NR mutant also showed that NO bursts were inducedby mechanical and wounding stresses and that NO was not a by-productof NR activity. A positive and significant correlation betweenNO production and DNA fragmentation was recorded for both centrifugedand non-centrifuged cells. Our results suggest that factorsother than NO contribute to DNA damage and cell death, and furthermore,that an inducible form of NOS is present in A. thaliana. Copyright2001 Annals of Botany Company Arabidopsis thaliana, cell death, DNA fragmentation, NO, plant stress, wounding  相似文献   

6.
Leaves and callus of Kalancho? daigremontiana and Taxus brevifolia were used to investigate nitric oxide-induced apoptosis in plant cells. The effect of nitric oxide (NO) was studied by using a NO donor, sodium nitroprusside (SNP), a nitric oxide-synthase (NOS) inhibitor, N:(G)-monomethyl-L-arginine (NMMA), and centrifugation (an apoptosis-inducing treatment in these species). NO production was visualized in cells and tissues with a specific probe, diaminofluorescein diacetate (DAF-2 DA). DNA fragmentation was detected in situ by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. In both species, NO was detected diffused in the cytosol of epidermal cells and in chloroplasts of guard cells and leaf parenchyma cells. Centrifugation increased NO production, DNA fragmentation and subsequent cell death by apoptosis. SNP mimicked centrifugation results. NMMA significantly decreased NO production and apoptosis in both species. The inhibitory effect of NMMA on NO production suggests that a putative NOS is present in Kalancho? and Taxus cells. The present results demonstrated the involvement of NO on DNA damage leading to cell death, and point to a potential role of NO as a signal molecule in these plants.  相似文献   

7.
A variety of evidence suggest that cardiovascular system functions are impaired in altered gravity conditions. In this study we investigated the influence of hypergravity environment (3g) on endothelial cell proliferation, endothelial vasoactive compound production and on in vitro angiogenesis. We found that cultured primary human endothelial cells were very sensitive to mild hypergravity conditions. Even if we did not record changes in cell viability and apoptosis, we found significant differences in cell proliferation, prostacyclin (PGI2) synthesis, nitric oxide (NO) synthesis, and in angiogenic responses. Using western blotting technique we detected an increased expression of cycloxygenase-2 (COX-2) in primary endothelial cells exposed for 48 hours to hypergravity, in comparison to those exposed to normal gravity.  相似文献   

8.
As a link in the preparation of the MULTIGEN experiment, which will take place on the International Space Station, ground based studies of the gene expression in Arabidopsis thaliana were performed. Microarray technology was used to screen Arabidopsis seedlings exposed to simulated hypogravity on a Random Positioning Machine and a 1 x g control sample. This screening showed differential expression in 177 out of approximately 8000 genes. Some of these genes can be grouped into functional categories, e.g. general metabolism, biogenesis of cellular components, cellular transport and transport facilitation, and cell rescue and defense response. However, about 50% of the genes encode proteins with unknown function. Based on the above results a new "in-house" cDNA microarray was constructed. Some of the selected genes on this microarray (e.g. Xyloglucan endotransglycosylase, At2g18800) showed differential expression both in Arabidopsis exposed to hypergravity and simulated hypogravity by use of a centrifuge and a Random Positioning Machine.  相似文献   

9.
Mammalian reproduction evolved within Earth's 1-g gravitational field. As we move closer to the reality of space habitation, there is growing scientific interest in how different gravitational states influence reproduction in mammals. Habitation of space and extended spaceflight missions require prolonged exposure to decreased gravity (hypogravity, i.e., weightlessness). Lift-off and re-entry of the spacecraft are associated with exposure to increased gravity (hypergravity). Existing data suggest that spaceflight is associated with a constellation of changes in reproductive physiology and function. However, limited spaceflight opportunities and confounding effects of various nongravitational factors associated with spaceflight (i.e., radiation, stress) have led to the development of ground-based models for studying the effects of altered gravity on biological systems. Human bed rest and rodent hindlimb unloading paradigms are used to study exposure to hypogravity. Centrifugation is used to study hypergravity. Here, we review the results of spaceflight and ground-based models of altered gravity on reproductive physiology. Studies utilizing ground-based models that simulate hyper- and hypogravity have produced reproductive results similar to those obtained from spaceflight and are contributing new information on biological responses across the gravity continuum, thereby confirming the appropriateness of these models for studying reproductive responses to altered gravity and the underlying mechanisms of these responses. Together, these unique tools are yielding new insights into the gravitational biology of reproduction in mammals.  相似文献   

10.
Microgravity-induced apoptosis in cultured glial cells   总被引:5,自引:0,他引:5  
Apoptosis is a form of naturally occurring cell death that plays fundamental roles during embryonic developement. In adults, it neatly disposes of cells damaged by injuries provoked by external causes such as UV radiation, ionisation and heat shock. Alteration of the gravity vector may be one of the external apoptosis inducers. Neurophysiological impairment signs were seen during space flights in astronauts, but very few studies were carried out on the nervous system and none at the cellular level. In this study, we submitted cultured C6 glioma cells to microgravity (0xg) of varying duration, obtained by clinorotation in a Fokker three-dimensional clinostat for 15 min, 30 min, 1h, 20h or 32h. After 30 min at 0xg, numerous nuclei underwent the classical morphological alterations (chromatin condensation, nuclear fragmentation, apoptotic bodies) that lead to the programmed cell death. After 30 min at 0xg, immunostaining for the enzyme caspase-7 was present in the cytoplasm of many cells concurrently with DNA fragmentation identified by the TUNEL method. At 32h, the number of apoptotic nuclei was much reduced indicating the ability of glial cells to adapt to altered gravity.  相似文献   

11.
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a target of caspases during apoptosis: its cleavage onto 89- and 24-kDa fragments is considered to be a hallmark of the apoptotic mode of cell death. Another hallmark is the activation of endonuclease which targets internucleosomal DNA. The aim of the present study was to reveal cell cycle phase specificity as well as the temporal and sequence relationships of PARP cleavage vis-à-vis DNA fragmentation in two model systems of apoptosis, one induced by DNA damage via cell treatment with camptothecin (CPT) (mitochondria-induced pathway) and another by the cytotoxic ligand tumor necrosis factor alpha (TNF-alpha) (cell surface death receptor pathway). PARP cleavage was detected immunocytochemically using antibody which recognizes its 89-kDa fragment (PARP p89) while DNA fragmentation was assayed by in situ labeling of DNA strand breaks. The frequency and extent of PARP cleavage as well as DNA fragmentation were measured by mutiparameter flow and laser scanning cytometry. PARP cleavage, selective to S phase cells, was detected 90 min after administration of CPT. PARP cleavage in the cells treated with TNF-alpha was not selective to any cell cycle phase and was seen already after 30 min. DNA fragmentation trailed PARP cleavage by about 30 min and showed a similar pattern of cell cycle specificity. PARP p89 was present in nuclear chromatin but at least in the early phase of apoptosis it did not colocalize with DNA strand breaks. The rate of cleavage of PARP molecules in individual cells whether induced by CPT or TNF-alpha was rapid as reflected by the paucity of cells with a mixture of cleaved and noncleaved PARP molecules. In contrast, DNA fragmentation proceeded stepwise before reaching the maximal number of DNA strand breaks. Although time windows for PARP cleavage vs DNA fragmentation were different at early stages of apoptosis, a good overall correlation between the cytometric assays of apoptotic cells identification based on these events was observed in both CPT- and TNF-alpha-treated cultures.  相似文献   

12.
Realization of programmed cell death in senescence represents an activation/inactivation of the respective gene. Enzymatic methylation of nuclear DNA with the creation of 5methylcytosine is one of the mechanisms, which can regulate gene activity in animal and plant cells. 5Azacytidine (5azaC) acts as an inhibitor of DNA methylation, and induces expression of a range of some genes including genes responsible for senescence. Fragmentation of nuclear DNA is one of the hallmarks of programmed cell death in apoptosis pathway in plant cells. The influence of 5azaC (100 microg/ml) on nuclear DNS amount and its fragmentation in the first leaf cells of barley was studied. It was shown that in the first leaf cells of barley seedlings there is an apoptosis pathway of programmed cell death. It was also observed that nuclear DNA fragmentation under the 5azaC influence is strongly inhibited, and the DNA amount in the first leaf increases. Synthesis and destruction of chlorophyll also play a significant role in programmed cell death in plants. It was shown that under the 5azaC influence, the absorption spectrum of a pigment does not change in leaves and coleoptiles in the light, whereas in the dark condition, these pigments are not created under the 5azaC influence.  相似文献   

13.
Summary. Leaf senescence is a highly coordinated process which involves programmed cell death (PCD). Early stages of leaf senescence occurring during normal leaf ontogenesis, but not triggered by stress factors, are less well known. In this study, we correlated condensation of chromatin and nuclear DNA (nDNA) fragmentation, two main features of PCD during early senescence in barley leaves, with the appearance of nitric oxide (NO) within leaf tissue. With the help of the alkaline version of the comet assay, together with measurements of nDNA fluorescence intensity, we performed a detailed analysis of the degree of nDNA fragmentation. We localised NO in vivo and in situ within the leaf and photometrically measured its concentration with the NO-specific fluorochrome 4-amino-5-methylamino-2′,7′-difluorofluorescein. We found that both nDNA fragmentation and chromatin condensation occurred quite early during barley leaf senescence and always in the same order: first nDNA fragmentation, in leaves of 6-day-old seedlings, and later chromatin condensation, in the apical part of leaves from 10-day-old seedlings. PCD did not start simultaneously even in neighbouring cells and probably did not proceed at the same rate. NO was localised in vivo and in situ within the cytoplasm, mainly in mitochondria, in leaves at the same stage as those in which chromatin condensation was observed. Localisation of NO in vascular tissue and in a large number of mesophyll cells during the senescence process might imply its transport to other parts of the leaf and its involvement in signalling between cells. The fact that the highest concentration of NO was found in the cytoplasm of mesophyll cells in the earliest stage of senescence and lower concentrations were found during later stages might suggest that NO plays an inductive role in PCD. Correspondence: A. Mostowska, Department of Plant Anatomy and Cytology, Institute of Experimental Biology of Plants, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.  相似文献   

14.
Confluent high-density cell cultures of A6 cells derived from adult male Xenopus kidney exhibit spontaneous dome-formation at 1 g. To determine whether this morphogenetic property is altered by gravity, we used a three-dimensional (3D) clinostat to subject the cells to simulated microgravity, and a centrifuge to subject them to hypergravity. We used the generation orbit control method as the new rotation control system of the 3D-clinostat, not the random method. The growth of A6 cells was significantly enhanced by hypergravity, but significantly reduced by simulated microgravity. Dome formation by A6 cells at high confluence was inhibited under simulated microgravity conditions, whereas hypergravity promoted dome formation and induced tubule morphogenesis, compared to the control at 1 g. These results indicated that changes in gravity influence the morphogenetic properties of A6 cells, such as dome formation and tubule morphogenesis. When dome formation by A6 cells at high confluence was induced spontaneously in the control 1 g culture, the gene expression of the HGF family of pleiotropic factors, such as HGF-like protein (HLP) and growth factor-Livertine (GF-l.ivertine), an epithelial serine protease of channel activating protease 1 (CAP1), and Na+, K+-adenosine triphosphatase (ATPase), increased. Simulated microgravity increased the gene expression of activin A and reduced the gene expression of HLP, GF-Livertine, CAP1, and Na+, K+-ATPase. Hypergravity, on the other hand, decreased the gene expression of activin A and increased the gene expression of HLP, GF-Livertine, CAP1, and Na+, K+-ATPase. These results suggest that the effects of gravitational changes on expression of the HGF family member gene, CAP1, and Na+, K+-ATPase gene may be important for the cell growth, tubule morphogenesis, and dome formation of A6 cells in altered  相似文献   

15.
We have previously shown that mechanical distortion or stretch of alveolar type II (ATII) cells induces both surfactant release and the induction of apoptosis. We hypothesize that nitric oxide (NO) secreted from alveolar macrophages (AMs) prevents cyclic stretch-induced apoptosis. We show that S-nitroso-N-acetyl-D, L-penicillamine (SNAP), a chemical donor of NO, protects cells against nuclear condensation and DNA fragmentation induced by stretch (30% at 60 cycles/min) as well as by sorbitol. SNAP depleted of NO had no protective effect, and the NO scavenger 2-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl 3-oxide blocked the antiapoptotic effect of SNAP. We also show that AMs isolated from rat lung lavage fluid actively synthesize and secrete NO. Using a novel technique in which AMs were cocultured with ATII cells while adhered to floating membrane rafts, we found that NO released from AMs was effective in protecting ATII cells from undergoing apoptosis. We therefore propose that NO secreted by AMs may function as part of a physiological antiapoptotic mechanism that prevents ATII cells from undergoing stretch-induced cell death in the lung.  相似文献   

16.
We investigated apoptotic cell death in murine macrophage cell line J774.1 following Actinobacillus actinomycetemcomitans infection. Infected macrophages generally kill bacteria within phagosomes with nitric oxide (NO). Our previous study demonstrated that DNA fragmentation in infected cells increased significantly on addition of S-Methylisothiourea (SMT), a selective inhibitor of inducible NO synthetase (iNOS). The purpose of the present study was to determine the mechanism via which NO affects apoptosis of infected macrophages. J774.1 cells were infected with A. actinomycetemcomitans Y4 at a bacterium/cell ratio of 500:1. The infected cells were then cultured in the presence or absence of SMT (400 microM). Culture supernatant was removed 21 h after the infection to measure LDH activity. Additionally, cellular proteins were extracted from the infected cells and measured for histone-associated DNA fragmentation and caspase-1, -3, -5, -6, -8, -9 activities. LDH activity and DNA fragmentation were significantly elevated by the infection; moreover, levels increased further on addition of SMT. Caspase activity of infected cells, particularly caspase-3, was significantly higher than that of uninfected cells. Furthermore, caspase activity increased on addition of SMT. These findings indicate that NO protects infected J774.1 cells, at least in part, against apoptotic cell death via a decrease in caspase activity.  相似文献   

17.

Background

Stem cell therapy has emerged as a potential therapeutic option for tissue engineering and regenerative medicine, but many issues remain to be resolved, such as the amount of seed cells, committed differentiation and the efficiency. Several previous studies have focused on the study of chemical inducement microenvironments. In the present study, we investigated the effects of gravity on the differentiation of bone marrow mesenchymal stem cells (BMSCs) into force-sensitive or force-insensitive cells.

Methods and results

Rat BMSCs (rBMSCs) were cultured under hypergravity or simulated microgravity (SMG) conditions with or without inducement medium. The expression levels of the characteristic proteins were measured and analyzed using immunocytochemical, RT-PCR and Western-blot analyses. After treatment with 5-azacytidine and hypergravity, rBMSCs expressed more characteristic proteins of cardiomyocytes such as cTnT, GATA4 and β-MHC; however, fewer such proteins were seen with SMG. After treating rBMSCs with osteogenic inducer and hypergravity, there were marked increases in the expression levels of ColIA1, Cbfa1 and ALP. Reverse results were obtained with SMG. rBMSCs treated with adipogenic inducer and SMG expressed greater levels of PPARgamma. Greater levels of Cbfa1- or cTnT-positive cells were observed under hypergravity without inducer, as shown by FACS analysis. These results indicate that hypergravity induces differentiation of rBMSCs into force-sensitive cells (cardiomyocytes and osteoblasts), whereas SMG induces force-insensitive cells (adipocytes).

Conclusion

Taken together, we conclude that gravity is an important factor affecting the differentiation of rBMSCs; this provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated or undifferentiated cells.  相似文献   

18.
Hypergravity produced by centrifugation caused inhibition of elongation growth and a decrease in the cell wall extensibility in azuki bean epicotyls ( Vigna angularis Ohwi et Ohashi). Also, hypergravity increased the molecular mass of xyloglucans, whereas it decreased xyloglucan-degrading activity in epicotyls. When the expression profiles of three xyloglucan endotransglucosylase/hydrolase ( XTH ) genes, VaXTHS4 , VaXTH1 and VaXTH2 , were analyzed under hypergravity conditions, the expression of VaXTHS4 , which shows only hydrolase activity, was downregulated in proportion to the logarithm of the magnitude of gravity (R = −0.94). However, the gene expression of VaXTH1 or VaXTH2 , which shows only transglucosylase activity, was not affected by gravitational conditions. When the seedlings that had been grown at 1  g were transferred to hypergravity conditions at 300  g , the downregulation of VaXTHS4 expression was detected within 1 h. By removal of hypergravity stimulus, VaXTHS4 expression was increased within 1 h. These results suggest that azuki bean epicotyls promptly regulate the expression level of only VaXTHS4 in response to gravity stimuli. The regulation of xyloglucan-hydrolyzing activity as a result of changes in VaXTHS4 expression may be involved in the regulation by gravity of molecular mass of xyloglucans, leading to modifications of cell wall mechanical properties and cell elongation. Lanthanum and gadolinium, potential blockers of mechanosensitive calcium ion permeable channels (mechanoreceptors), nullified the suppression of VaXTHS4 expression, suggesting that mechanoreceptors are responsible for inhibition by hypergravity of VaXTHS4 expression.  相似文献   

19.
Kato Y  Mogami Y  Baba SA 《Zoological science》2003,20(11):1373-1380
It has been reported that Paramecium proliferates faster when cultured under microgravity in orbit, and slower when cultured under hypergravity. This shows that the proliferation rate of Paramecium affected by gravity. The effect of gravity on Paramecium proliferation has been argued to be direct in a paper with an axenic culture under hypergravity. To clear up uncertainties with regard to the effect of gravity, Paramecium tetraurelia was cultured axenically under hypergravity (20 x g) and the time course of the proliferation was investigated quantitatively by a new non-invasive method, laser-beam optical slice, for measuring the cell density. This method includes optical slicing a part of the culture and computer-aided counting of cells in the sliced volume. The effects of hypergravity were assessed by comparing the kinetic parameters of proliferation that were obtained through a numerical analysis based on the logistic growth equation. Cells grown under 20 x g conditions had a significantly lower proliferation rate, and had a lower population density at the stationary phase. The lowered proliferation rate continued as long as cells were exposed to hypergravity (> one month). Hypergravity reduced the cell size of Paramecium. The long and short axes of the cell became shorter at 20 x g than those of control cells, which indicates a decrease in volume of the cell grown under hypergravity and is consistent with the reported increase in cell volume under microgravity. The reduced proliferation rate implies changes in biological time defined by fission age. In fact the length of autogamy immaturity decreased by measure of clock time, whereas it remained unchanged by measure of fission age.  相似文献   

20.
This study evaluated in vitro the differences in morphological behaviour between fibroblast cultured on smooth and micro-grooved substrata (groove depth: 1 mum, width: 1, 2, 5, 10 microm), which undergo artificial hypergravity by centrifugation (10, 24 and 50 g; or 1 g control). The aim of the study was to clarify which of these parameters was more important to determine cell behaviour. Morphological characteristics were investigated using scanning electron microscopy and fluorescence microscopy in order to obtain qualitative information on cell spreading and alignment. Confocal laser scanning microscopy visualised distribution of actin filaments and vinculin anchoring points through immunostaining. Finally, expression of collagen type I, fibronectin, and alpha(1)- and beta(1)-integrin were investigated by PCR. Microscopy and image analysis showed that the fibroblasts aligned along the groove direction on all textured surfaces. On the smooth substrata (control), cells spread out in a random fashion. The alignment of cells cultured on grooved surfaces increased with higher g-forces until a peak value at 25 g. An ANOVA was performed on the data, for all main parameters: topography, gravity force, and time. In this analysis, all parameters proved significant. In addition, most gene levels were reduced by hypergravity. Still, collagen type 1 and fibronectin are seemingly unaffected by time or force. From our data it is concluded that the fibroblasts primarily adjust their shape according to morphological environmental cues like substratum surface whilst a secondary, but significant, role is played by hypergravity forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号