首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

2.
This paper describes the development of a reliable transformation system for garlic (Allium sativum L.) and its application in producing insect resistant GM garlic lines. The transformation system is based on Agrobacterium tumefaciens as a vector, using young callus derived from different callus sources: callus induced from both apical and non-apical root segments of in vitro plantlets, true garlic seeds and bulbils. Two different reporter genes were used in our garlic transformation experiments, namely the gusA gene coding for -glucuronidase and the gfp gene coding for green fluorescent protein. A total of seven independent transformed callus lines derived from different callus sources were obtained. The advantage of the system developed is the short time period needed for completion of the protocol (about 6 months) and the year-round availability of high quality callus from in vitro roots. The highest transformation frequency in a single experiment (1.47%), was obtained using garlic cv. 'Printanor'. Differences existed between cultivars in transformation frequency but were not significant. The same was found for the plasmids used in transforming garlic. Via PCR the presence of the gusA, hpt (hygromycin phosphotransferase) and gfp genes could be demonstrated in putative transformed in vitro plants. Southern hybridization showed that the reporter gene gusA and the selective gene hpt were stably integrated into the garlic genome. After transfer to the greenhouse of in vitro regenerants, transgenic garlic harbouring the gusA gene survived and grew well, whereas the gfp transgenic garlic gradually died under these conditions.Using this protocol transgenic garlic resistant to beet armyworm using the cry1Ca and H04 resistance genes from Bacillus thuringiensis were developed. Via Southern hybridization it was shown that the cry1Ca sequence was stably integrated into the garlic genome. After transfer of the transgenic in vitro garlic plants to the greenhouse, the cry1Ca plants developed normally and grew well to maturity with normal bulbs. However, all transgenic in vitro H04 garlic plants did not survive after transfer to the greenhouse. Transgenic cry1Ca garlic plants proved completely resistant to beet armyworm in a number of in vitro bio-assays. This finding will facilitate the development of new garlic cultivars resistant to beet armyworm.  相似文献   

3.
The use of reporter genes to characterise sequence elements that act to regulate gene expression in transgenic plants has been vital to the development of foreign gene expression strategies for use in cereal transformation. ThegusA locus ofEscherichia coli, which encodes the enzyme-glucuronidase (GUS), is by far the most popular reporter gene used in plant transformation. In this paper we extend the utility of the GUS reporter gene system in cereal transformation by describing and evaluating a number of novel constructs suitable for use in direct gene transfer experiments. These plasmids are all available from the Molecular Genetic Resource Service of the Center for the Application of Molecular Biology to International Agriculture.  相似文献   

4.
Transgenic leek (Allium porrum) and garlic (Allium sativum) plants have been recovered by the selective culturing of immature leek and garlic embryos via Agrobacterium-mediated transformation using a method similar to that described by Eady et al. (Plant Cell Rep 19:376–381, 2000) for onion transformation. This method involved the use of a binary vector containing the m-gfp-ER reporter gene and nptII selectable marker, and followed the protocol developed previously for the transformation of onions with only minor modifications pertaining to the post-transformation selection procedure which was simplified to have just a single selection regime. Transgenic cultures were selected for their ability to express the m-gfp-ER reporter gene and grown in the presence of geneticin (20 mg/l). The presence of transgenes in the genome of the plants was confirmed using TAIL-PCR and Southern analysis. This is the first report of leek and true seed garlic transformation. It now makes possible the integration of useful agronomic and quality traits into these crops.  相似文献   

5.
Zhao Y  Liu Q  Davis RE 《Plant cell reports》2004,23(4):224-230
Strawberry is susceptible to diseases caused by phytoplasmas, mycoplasma-like prokaryotes restricted to sieve elements in the phloem tissue of infected plants. One strategy to improve strawberry resistance to phytoplasmas involves transgenic expression of anti-microbial peptide genes in phloem. For targeted phloem-specific expression, we constructed a binary vector with an expression cassette bearing the -glucuronidase (GUS) reporter gene (uidA) under control of the Arabidopsis sucrose-H+ symporter gene (AtSUC2) promoter. Transgenic strawberry lines were generated with high efficiencies by a modified transformation protocol, which combines the adoption of a 3-day pre-selection period following transformation, and the addition of 10-M thidiazuron to the regeneration medium. Histological GUS activity indicated that the reporter gene was expressed specifically in phloem of leaves, petioles, and roots of transgenic plants. The results suggest that the transformation protocol and the AtSUC2 promoter may be useful for engineering phytoplasma-resistant transgenic strawberries.  相似文献   

6.
A fusion gene usingluxA andluxB genes ofVibrio species has been designed to express light autonomously in plants.LuxA:luxB was introduced into plants by a high-efficiency transformation system consisting of a high-copy virulence helper plasmid pUCD2614 and T-vector pUCD2715 containingluxA:luxB. The expression ofluxA:luxB fusion gene was optimized by adjusting the spacing between the genes and by placing the translational efficiency of its mRNA under the control of the -3 translational enhancer. The resulting transgenic plants synthesized luciferase at levels greater than 1% of the total leaf protein. These plants produced light autonomously and light intensity was enhanced by the addition of aldehyde. That theluxA:luxB fusion has been optimized enables its use as a reporter for gene activity in plants during development and under various stress-inducing conditions. These results show that a specific protein from an introduced foreign gene can be produced with high efficiency in cultivated plants and such a system is therefore amenable for production of desired proteins through conventional farming methods.  相似文献   

7.
Several experiments had indicated that in planta transformation of Arabidopsis thaliana by Agrobacterium involves the female germ line. In order to identify the precise stage at which transformation occurs we have monitored expression of a gusA reporter gene in the two products of the double fertilization of infiltrated plants. The plantlets and the remaining endosperm of seeds were separately tested after germination. It appeared that in the majority of cases only the plantlet or the endosperm were transformed. Based on transformation with two vectors borne by two different Agrobacterium strains, the minority of co-transformed plantlets and endosperm can be explained by simultaneous but independent transformation events. These results indicate that mature female gametes could be the targets of T-DNA.  相似文献   

8.
The attempts of this investigation were to develop a system for plant regeneration from explants of adult plants and its use for genetic transformation of important commercial Pelargonium zonale hybrid and P. peltatum hybrid cultivars. To this aim, leaf blade and petiole explants of eight cultivars were cultured on modified MS (Murashige and Skoog, 1962) medium with two concentrations of TDZ, BA, and zeatin (5 and 20 M). Petiole explants showed a higher regeneration response than leaf blade explants and TDZ was the most effective cytokinin. Petioles of 16 cultivars were incubated on medium containing 5, 10, 15, and 20 M TDZ, respectively, in order to identify the most effective TDZ concentration. For the majority of genotypes 10 M TDZ resulted in the best regeneration response. Cefotaxim at 500 mg l –1 had no effect on shoot regeneration and did not show interaction with glufosinate. For selection of transgenic cells, a concentration of 2.5 M glufosinate was shown to be appropriate. LBA4404 and EHA101 Agrobacterium strains carrying pIBGUS vector with pat gene as selectable marker gene and GUS gene as reporter gene were compared in transformation studies. With regard to GUS expression in petiole explants 16 days after coculture, better results were obtained with EHA 101 than with LBA 4404.  相似文献   

9.
Summary White clover (Trifolium repens L.) plants from the cultivars Grasslands Huia and Grasslands Tahora have been transformed using Agrobacterium-mediated T-DNA transfer. Transgenic plants regenerated directly from cells of the cotyledonary axil. To transform white clover, shoot tips from 3 day old seedlings were co-cultivated with A. tumefaciens strain LBA4404 carrying the plasmid vector pPE64. This vector contains the neomycin phosphotransferase II gene (nptII) and -glucuronidase reporter gene (gus) both under the control of the CaMV 35S promoter. Kanamycin-resistant plants regenerated within 42 days after transfer onto selective media. Integration of the nptII and gus genes into the white clover genome was confirmed using Southern blotting, and histochemical analysis indicated that the gus gene was expressed in a variety of tissues. In reciprocal crosses between a primary transformant and a non-transformed plant the introduced gus gene segregated as a single dominant Mendelian trait.Abbreviations BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MS Murashige and Skoog - GUS -glucuronidase - X-GLUc 5-bromo-4-chloro-3-indolyl--D-glucuronide - MUG methylumbelliferyl--D-glucuronide - CaMV Cauliflower Mosaic Virus - NPTII neomycin phosphotransferase II - OCS octopine synthase - 4-MU 4-methyl umbelliferone  相似文献   

10.
Plasmid DNA (pBI-P5CS), containing the selectable neomycin phosphotransferase-II `npt II' gene for kanamycin resistance and the reporter -glucuronidase `gus' gene as well as the Vigna aconitifolia 1-pyrroline-5-carboxylate synthetase `P5CS' cDNA that encodes enzymes required for the biosynthesis of proline, was delivered into wheat plants using Agrobacterium-mediated gene transfer via indirect pollen system. Southern, northern and western blot analysis demonstrated that the foreign gene had been transferred, expressed and integrated into wheat chromosomal DNA. Salinity test indicated that proline acts as an osmoprotectant and its overproduction in transgenic wheat plants results in the increased tolerance to salt.  相似文献   

11.
We compared rice transgenic plants obtained by Agrobacterium-mediated and particle bombardment transformation by carrying out molecular analyses of the T0, T1 and T2 transgenic plants. Oryza sativa japonica rice (c.v. Taipei 309) was transformed with a construct (pWNHG) that carried genes coding for neomycin phosphotransferase (nptII), hygromycin phosphotransferase (Hygr), and -glucuronidase (GUS). Thirteen and fourteen transgenic lines produced via either method were selected and subjected to molecular analysis. Based on our data, we could draw the following conclusions. Average gene copy numbers of the three transgenes were 1.8 and 2.7 for transgenic plants obtained by Agrobacterium and by particle bombardment, respectively. The percentage of transgenic plants containing intact copies of foreign genes, especially non-selection genes, was higher for Agrobacterium-mediated transformation. GUS gene expression level in transgenic plants obtained from Agrobacterium-mediated transformation was more stable overall the transgenic plant lines obtained by particle bombardment. Most of the transgenic plants obtained from the two transformation systems gave a Mendelian segregation pattern of foreign genes in T1 and T2 generations. Co-segregation was observed for lines obtained from particle bombardment, however, that was not always the case for T1 lines obtained from Agrobacterium-mediated transformation. Fertility of transgenic plants obtained from Agrobacterium-mediated transformation was better. In summary, the Agrobacterium-mediated transformation is a good system to obtain transgenic plants with lower copy number, intact foreign gene and stable gene expression, while particle bombardment is a high efficiency system to produce large number of transgenic plants with a wide range of gene expression.  相似文献   

12.
Transgenic radish (Raphanus sativus L. longipinnatus Bailey) plants were produced from the progeny of plants which were dipped into a suspension of Agrobacterium carrying both the -glucuronidase (gusA) gene and a gene for resistance to the herbicide Basta (bar) between T-DNA border sequences. The importance of development of the floral-dipped plant and presence of surfactant in the inoculation medium were evaluated in terms of transgenic plant production. Plants dipped at the primary bolt stage of growth, into a suspension of Agrobacterium containing 0.05% (v/v) Silwet L-77 resulted in optimum transformation efficiency, with 1.4% from 1110 seeds. The presence of Pluronic F-68 or Tween 20 in the inoculation medium was beneficial towards transgenic plant output compared to treatments without surfactant. Putative transformed T1 plants were efficiently selected by spraying with 0.03% (v/v) Basta and all herbicide-resistant plants tested positive for GUS activity when analysed both histochemically and fluorometrically. Southern analysis revealed that both the gusA and bar genes integrated into the genome of transformed plants and segregated as dominant Mendelian traits. These results demonstrate that radish can be genetically modified for the improvement of this important vegetable crop.  相似文献   

13.
Regeneration of transgenic tamarillo plants   总被引:2,自引:0,他引:2  
Media were developed to regenerate shoots from leaf pieces of tamarillo (Cyphomandra betacea (Cav.) Sendtner). Shoots were derived via organogenesis and could be easily rooted and transferred to the growth chamber. Transgenic tamarillo plants were produced using the binary vector pKIWI110 in the avirulent Agrobacterium strain LBA4404. All transgenic plants were kanamycin resistant and some plants expressed the D-glucuronidase (gusA) reporter gene and were chlorsulfuron resistant. Molecular evidence for transformation was obtained using PCR (polymerase chain reaction) and Southern hybridization. Inheritance of the transgenic phenotypes was demonstrated in seedling progeny.  相似文献   

14.
Regeneration of pepino (Solanum muricatum Ait.) shoots was achieved both by organogenesis and by embryogenesis. Shoots derived via organogenesis were easily rooted and most regenerated plants appeared phenotypically normal. Transgenic plants were obtained using the binary vector pKIWI110 in the avirulent Agrobacterium tumefaciens strain LBA4404. Optimization of transformation protocols was rapidly achieved by monitoring early expression of the GUS (-D-glucuronidase) reporter gene carried on pKIWI110. Transgenic plants expressed GUS and selectable marker genes for kanamycin resistance and chlorsulfuron resistance. PCR (polymerase chain reaction) and Southern analysis provided molecular evidence for transformation.  相似文献   

15.
The agropine type Agrobacterium rhizogenes strain LBA9402 induced callus and roots on stems of greenhouse grown plants and on leaf disks of in vitro grown plantlets of chrysanthemum (Dendranthema grandiflora Tzvel.). In this callus and roots no opines were detected, nor were any of the other features of the hairy root syndrome observed. Experiments aimed to identify the nature of the tumour-like growth revealed that induction was correlated with the presence of the TR-DNA on the Ri-plasmid. Root induction was probably the result of auxin synthesis following transient expression of iaaM and iaaH genes, present on the TR-DNA. The chrysanthemum cultivar used, cv. Parliament, showed a high auxin sensitivity compared to tobacco. Analysis of early transformation events using the GUSintron reporter gene revealed that low efficiency gene transfer and transient gene expression took place, but most probably without stable integration of the T-DNA in the plant genome. The results presented here stress the fact that callus formation or root induction as measures for transformation efficiency should be used with caution.  相似文献   

16.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

17.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

18.
Experiments were conducted to produce transgenic barley plants following infection of immature embryos with Agrobacterium tumefaciens. Transformed callus was obtained using hygromycin resistance as a selectable marker and either green fluorescent protein (GFP) or -glucuronidase (GUS) as a reporter. Significantly reduced plant transformation frequencies were obtained with the GFP gene compared to GUS. However, GFP proved to be an excellent reporter of early transformation events and was used to compare four barley cultivars for efficiency in two phases of transformation: the generation of stably transformed barley callus and the regeneration of plantlets from transformed callus. Transformed callus was generated at a high frequency (47–76%) in all four cultivars. Regeneration of transformed plantlets was also achieved for all four cultivars although the frequency was much higher for Golden Promise than for the other three genotypes, reiterating that genotype is an important determinant in the regenerative ability of barley. This study has demonstrated for the first time that Agrobacterium-mediated transformation can be used to transform the Australian cultivars Sloop and Chebec.Communicated by W. Harwood  相似文献   

19.
20.
Transgenic plants were obtained after particle bombardment of embryogenic callus derived from stem segments of two tetraploid Alstroemeria genotypes with plasmids containing different selection/reporter genes. Firstly, a plasmid containing a firefly luciferase reporter gene driven by the maize ubiquitin promoter (Ubi1), was bombarded into both friable embryogenic callus and proembryos. Transient and stable expression of luciferase was visually detected by a luminometer. This selection method is non-destructive and can be applied over the whole developmental process from callus to embryo and plantlet. Molecular proof of transformation was obtained both by PCR analysis and Southern hybridization. Secondly, a plasmid containing the bar gene together with an uidA gene coding for -glucuronidase both driven by the Ubi1 promoter was bombarded into proembryos. The transgenic callus was effectively selected from the callus clumps four months after bombardment on a medium containing 5 mg/l phosphinotricin (PPT). Selection by PPT was efficient and labour-saving. Stable expression of GUS was confirmed by the histochemical staining assay and molecular proof was obtained by PCR analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号