首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously it was shown that the Arabidopsis apyrase genes AtAPY1 and AtAPY2 are crucial for male fertility because mutant pollen (apy1-1; apy2-1) with T-DNA insertions in both genes could not germinate (Steinebrunner et al. (2003) Plant Physiol. 131: 1638–1647). In this study, pollen germination was restored and apyrase T-DNA double knockouts (DKO) apy1-1/apy1-1; apy2-1/apy2-1 were generated by complementation with AtAPY2 under the control of a pollen-specific promoter. The DKO phenotype displayed developmental defects including the lack of functional root and shoot meristems. In cotyledons, morphogenetic and patterning abnormalities were apparent, e.g., unlobed pavement cells and stomatal clusters. Another set of lines was created which carried either AtAPY1 or AtAPY2 under a dexamethasone-(DEX)-inducible promoter as an additional transgene to the pollen-specific gene construct. Application of DEX did not reverse the DKO phenotype to wild-type, but some inducible lines exhibited less severe defects even in the absence of the inducer, probably due to some background expression. However, even these DKO mutants were seedling-lethal and shared other defects regarding cell division, cell expansion and stomatal patterning. Taken together, the defects in the DKO mutants demonstrate that AtAPY1 and AtAPY2 are essential for normal plant development.  相似文献   

2.
Expression of two Arabidopsis (Arabidopsis thaliana) apyrase (nucleoside triphosphate-diphosphohydrolase) genes with high similarity, APY1 and APY2, was analyzed during seedling development and under different light treatments using beta-glucuronidase fusion constructs with the promoters of both genes. As evaluated by beta-glucuronidase staining and independently confirmed by other methods, the highest expression of both apyrases was in rapidly growing tissues and/or tissues that accumulate high auxin levels. Red-light treatment of etiolated seedlings suppressed the protein and message level of both apyrases at least as rapidly as it inhibited hypocotyl growth. Adult apy1 and apy2 single mutants had near-normal growth, but apy1apy2 double-knockout plants were dwarf, due primarily to reduced cell elongation. Pollen tubes and etiolated hypocotyls overexpressing an apyrase had faster growth rates than wild-type plants. Growing pollen tubes released ATP into the growth medium and suppression of apyrase activity by antiapyrase antibodies or by inhibitors simultaneously increased medium ATP levels and inhibited pollen tube growth. These results imply that APY1 and APY2, like their homologs in animals, act to reduce the concentration of extracellular nucleotides, and that this function is important for the regulation of growth in Arabidopsis.  相似文献   

3.
In Arabidopsis leaves there is a bi-phasic dose-response to applied nucleotides; i.e., lower concentrations induce stomatal opening, while higher concentrations induce closure. Two mammalian purinoceptor antagonists, PPADS and RB2, block both nucleotide-induced stomatal opening and closing. These antagonists also partially block ABA-induced stomatal closure and light-induced stomatal opening. There are two closely related Arabidopsis apyrases, AtAPY1 and AtAPY2, which are both expressed in guard cells. Here we report that low levels of apyrase chemical inhibitors can induce stomatal opening in the dark, while apyrase enzyme blocks ABA-induced stomatal closure. We also demonstrate that high concentrations of ATP induce stomatal closure in the light. Application of ATPγS and chemical apyrase inhibitors at concentrations that have no effect on stomatal closure can lower the threshold for ABA-induced closure. The closure induced by ATPγS was not observed in gpa1-3 loss-of-function mutants. These results further confirm the role of extracellular ATP in regulating stomatal apertures.  相似文献   

4.
Four putative apyrase genes were identified from the model legume Medicago truncatula. Two of the genes identified from M. truncatula (Mtapy1 and Mtapy4) are expressed in roots and are inducible within 3 h after inoculation with Sinorhizobium meliloti. The level of mRNA expression of the other two putative apyrases, Mtapy2 and Mtapy3, was unaffected by rhizobial inoculation. Screening of a bacterial artificial chromosome library of M. truncatula genomic DNA showed that Mtapy1, Mtapy3, and Mtapy4 are present on a single bacterial artificial chromosome clone. This apyrase cluster was mapped to linkage group seven. A syntenic region on soybean linkage group J was found to contain at least two apyrase genes. Screening of nodulation deficient mutants of M. truncatula revealed that two such mutants do not express apyrases to any detectable level. The data suggest a role for apyrases early in the nodulation response before the involvement of root cortical cell division leading to the nodule structure.  相似文献   

5.
ABSTRACT: BACKGROUND: The two highly similar Arabidopsis apyrases AtAPY1 and AtAPY2 were previously shown to be involved in plant growth and development, evidently by regulating extracellular ATP signals. The subcellular localization of AtAPY1 was investigated to corroborate an extracellular function. RESULTS: Transgenic Arabidopsis lines expressing AtAPY1 fused to the SNAP-(O6-alkylguanine-DNA alkyltransferase)-tag were used for indirect immunofluorescence and AtAPY1 was detected in punctate structures within the cell. The same signal pattern was found in seedlings stably overexpressing AtAPY1-GFP by indirect immunofluorescence and live imaging. In order to identify the nature of the AtAPY1-positive structures, AtAPY1-GFP expressing seedlings were treated with the endocytic marker stain FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylamino-phenyl-hexatrienyl)-pyridinium dibromide) and crossed with a transgenic line expressing the trans-Golgi marker Rab E1d. Neither FM4-64 nor Rab E1d co-localized with AtAPY1. However, live imaging of transgenic Arabidopsis lines expressing AtAPY1-GFP and either the fluorescent protein-tagged Golgi marker Membrin 12, Syntaxin of plants 32 or Golgi transport 1 protein homolog showed co-localization. The Golgi localization was confirmed by immunogold labeling of AtAPY1-GFP. There was no indication of extracellular AtAPY1 by indirect immunofluorescence using antibodies against SNAP and GFP, live imaging of AtAPY1-GFP and immunogold labeling of AtAPY1-GFP. Activity assays with AtAPY1-GFP revealed GDP, UDP and IDP as substrates, but neither ATP nor ADP. To determine if AtAPY1 is a soluble or membrane protein, microsomal membranes were isolated and treated with various solubilizing agents. Only SDS and urea (not alkaline or high salt conditions) were able to release the AtAPY1 protein from microsomal membranes. CONCLUSIONS: AtAPY1 is an integral Golgi protein with the substrate specificity typical for Golgi apyrases. It is therefore not likely to regulate extracellular nucleotide signals as previously thought. We propose instead that AtAPY1 exerts its growth and developmental effects by possibly regulating glycosylation reactions in the Golgi.  相似文献   

6.
The Arabidopsis E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) AtAPY1 was previously shown to be involved in growth and development, pollen germination and stress responses. It was proposed to perform these functions through regulation of extracellular ATP signals. However, a GFP-tagged version was localized exclusively in the Golgi and did not hydrolyze ATP. In this study, AtAPY1 without the bulky GFP-tag was biochemically characterized with regard to its suggested role in purinergic signaling. Both the full-length protein and a soluble form without the transmembrane domain near the N-terminus were produced in HEK293 cells. Of the twelve nucleotide substrates tested, only three – GDP, IDP and UDP – were hydrolyzed, confirming that ATP was not a substrate of AtAPY1. In addition, the effects of pH, divalent metal ions, known E-NTPDase inhibitors and calmodulin on AtAPY1 activity were analyzed. AtAPY1-GFP extracted from transgenic Arabidopsis seedlings was included in the analyses. All three AtAPY1 versions exhibited very similar biochemical properties. Activity was detectable in a broad pH range, and Ca2+, Mg2+ and Mn2+ were the three most efficient cofactors. Of the inhibitors tested, vanadate was the most potent one. Surprisingly, sulfonamide-based inhibitors shown to inhibit other E-NTPDases and presumed to inhibit AtAPY1 as well were not effective. Calmodulin stimulated the activity of the GFP-tagless membranous and soluble AtAPY1 forms about five-fold, but did not alter their substrate specificities. The apparent Km values obtained with AtAPY1-GFP indicate that AtAPY1 is primarily a GDPase. A putative three-dimensional structural model of the ecto-domain is presented, explaining the potent inhibitory potential of vanadate and predicting the binding mode of GDP. The found substrate specificity classifies AtAPY1 as a nucleoside diphosphatase typical of N-terminally anchored Golgi E-NTPDases and negates a direct function in purinergic signaling.  相似文献   

7.
The 49 kD apyrase (EC 3.6.1.5), streptavidin-binding proteins, and antimicrobial activity in the subcellular fractions from different seed parts of Pisum sativum L. var. Alaska were examined. Except cotyledons, all subcellular fractions contained 49 kD apyrase, and a considerable relationship was found between 49 kD apyrase and NTPase activities that increased with increasing time of germination. The bulk of 49 kD apyrase and NTPase activities was found in the nucleus pellets and cytoskeleton-enriched fraction, indicating their physiological importance. At 72 h of germination, all subcellular fractions of primary stems have a greater amount of 49 kD apyrase and NTPase than primary leaves and much more than primary roots and cotyledonary stalks. All seed parts showed antimicrobial activities, and the bulk of inhibition activities was found in the cytoskeleton-enriched and nucleus pellets, which was greater in the primary stems and leaves than in other parts. Current findings reveal that apyrases have important roles in metabolic activities in all parts of the pea plants except cotyledons. Cotyledons contained much streptavidin-binding proteins, which might have different physiological roles than apyrases.  相似文献   

8.
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues.  相似文献   

9.
S Wu  M Peiffer  DS Luthe  GW Felton 《PloS one》2012,7(7):e41947
The oral secretions of herbivores are important recognition cues that can be used by plants to mediate induced defenses. In this study, a degradation of adenosine-5'-triphosphate (ATP) in tomato leaves was detected after treatment with Helicoverpa zea saliva. Correspondingly, a high level of ATPase activity in saliva was detected and three ATP hydrolyzing enzymes: apyrase, ATP synthase and ATPase 13A1 were identified in salivary glands. To determine the functions of these proteins in mediating defenses, they were cloned from H. zea and expressed in Escherichia coli. By applying the purified expressed apyrase, ATP synthase or ATPase 13A1 to wounded tomato leaves, it was determined that these ATP hydrolyzing enzymes suppressed the defensive genes regulated by the jasmonic acid and ethylene pathways in tomato plant. Suppression of glandular trichome production was also observed after treatment. Blood-feeding arthropods employ 5'-nucleotidase family of apyrases to circumvent host responses and the H. zea apyrase, is also a member of this family. The comparatively high degree of sequence similarity of the H. zea salivary apyrase with mosquito apyrases suggests a broader evolutionary role for salivary apyrases than previously envisioned.  相似文献   

10.
To identify genes with essential roles in male gametophytic development, including postpollination (progamic) events, we have undertaken a genetic screen based on segregation ratio distortion of a transposon-borne kanamycin-resistance marker. In a population of 3359 Arabidopsis Ds transposon insertion lines, we identified 20 mutants with stably reduced segregation ratios arising from reduced gametophytic transmission. All 20 mutants showed strict cosegregation of Ds and the reduced gametophytic transmission phenotype. Among these, 10 mutants affected both male and female transmission and 10 mutants showed male-specific transmission defects. Four male and female (ungud) mutants and 1 male-specific mutant showed cellular defects in microspores and/or in developing pollen. The 6 remaining ungud mutants and 9 male-specific (seth) mutants affected pollen functions during progamic development. In vitro and in vivo analyses are reported for 5 seth mutants. seth6 completely blocked pollen germination, while seth7 strongly reduced pollen germination efficiency and tube growth. In contrast, seth8, seth9, or seth10 pollen showed reduced competitive ability that was linked to slower rates of pollen tube growth. Gene sequences disrupted in seth insertions suggest essential functions for putative SETH proteins in diverse processes including protein anchoring, cell wall biosynthesis, signaling, and metabolism.  相似文献   

11.
The plant cytoskeleton plays a pivotal role in determining the direction of cell wall expansion, and ultimately the cell's final shape. However, the mechanisms by which localized expansion events are initiated remain obscure. Mutational analysis of the trichome (plant hair) morphogenic pathway in Arabidopsis has identified at least eight genes that determine trichome branch number. One of these genes, ZWICHEL (ZWI), encodes a novel member of the kinesin superfamily of motor proteins. Mutations in the ZWI gene cause a reduction in the number of trichome branches. To identify additional genes involved in trichome branch initiation, we screened for extragenic suppressors of the zwi-3 mutation and isolated three suppressors that rescued the branch number defect of zwi-3. These suppressors define three genes, named suz, for suppressor of zwichel-3. All of the suppressors were shown to be allele specific. One of the suppressors, suz2, also rescued the trichome branch number defect of another branch mutant, furca1-2. Plants homozygous for suz2 have more than the wild-type number of trichome branches. This suggests that SUZ2 is a negative regulator of trichome branching and may interact with ZWI and FURCA1. The suz1 and suz3 mutants display no obvious phenotype in the absence of the zwi-3 mutation. The suz1 zwi-3 double mutants also exhibited a male-sterile phenotype due to a defect in pollen tube germination and growth, whereas both the suz1 and the zwi-3 single mutants are fertile. The synthetic male sterility of the suz1 zwi-3 double mutants suggests a role for SUZ1 and ZWI in pollen germination and pollen tube growth. DNA sequence analysis of the zwi-3 mutation indicated that only the tail domain of the zwi-3 protein would be expressed. Thus, the suz mutations show allele-specific suppression of a kinesin mutant that lacks the motor domain.  相似文献   

12.
13.
Plastid division is controlled by numerous nuclear genes. Arabidopsis thaliana CRUMPLED LEAF (AtCRL) is a plastid division-related gene, and the crl mutant exhibits a dwarf phenotype with abnormal cell division and a significant reduction in plastid numbers. However, the function of AtCRL is not fully understood. Here, we identified and characterized two AtCRL homologs, PpCRL1 and PpCRL2, in the moss Physcomitrella patens. PpCRL1 and PpCRL2 shared 77% amino acid identity with each other and 47% identity with AtCRL. Single PpCRL1 or -2 gene knockout (KO) mutants could not be distinguished from the wild-type mosses, but PpCRL1 and -2 double KO mutants displayed growth retardation of protonemata and gametophores and harbored approximately 10 large chloroplasts per cell. This indicates that PpCRL1 and PpCRL2 have redundant functions in chloroplast division and plant growth. Unlike the A. thaliana crl mutants, however, the PpCRL double KO mutants did not display abnormal orientation of the cell division plane. Complementation experiments showed that AtCRL partially rescued the defects in chloroplast size and number of the PpCRL double KO mutant. This suggests that PpCRL has a similar, but not identical, function to AtCRL. Time-lapse microscopic observation of the double PpCRL KO mutants revealed that some dumbbell-shaped chloroplasts failed to complete division at the late stage of plastid division; enlarged chloroplasts were thus generated. This strongly suggests that PpCRLs are involved in the complete separation of dividing chloroplasts.  相似文献   

14.
15.
Appropriate pollen germination is crucial for plant reproduction. Previous studies have revealed the importance of dehydration in maintaining pollen dormancy; here, we show that phosphatidylinositol pathway-controlled Ins(1,4,5)P(3)/Ca(2+) levels are crucial for maintaining pollen dormancy in Arabidopsis thaliana. An interesting phenotype, precocious pollen germination within anthers, results from a disruption of inositol polyphosphate 5-phosphatase 12 (5PT12). The knockout mutant 5pt12 has normal early pollen development and pollen dehydration, and exhibits hypersensitive ABA responses, indicating that precocious pollen germination is not caused either by abnormal dehydration or by suppressed ABA signaling. Deficiency of 5PT13 (a close paralog of 5PT12) synergistically enhances precocious pollen germination. Both basal Ins(1,4,5)P(3) levels and endogenous Ca(2+) levels are elevated in pollen from 5pt12 mutants, and 5pt12 5pt13 double mutants show an even higher precocious germination rate along with much higher levels of Ins(1,4,5)P(3)/Ca(2+). Strikingly, exogenous Ca(2+) stimulates the germination of wild-type pollen at floral stage 12, even in very low humidity, both in vitro and in vivo, and treatment with BAPTA, a [Ca(2+)](cyt) inhibitor, reduces the precocious pollen germination rates of 5pt12, 5pt13 and 5pt12 5pt13 mutants. These results indicate that the increase in the levels of Ins(1,4,5)P(3)/Ca(2+) caused by deficiency of inositol polyphosphate 5-phosphatases is sufficient to break pollen dormancy and to trigger early germination. The study reveals that independent of dehydration, the control of Ins(1,4,5)P(3)/Ca(2+) levels by Inositol polyphosphate 5-phosphatases is crucial for maintaining pollen dormancy.  相似文献   

16.
Nucleoside triphosphate diphosphohydrolase--NTPDase1 (apyrase, EC 3.6.1.5) was modeled based on sequence homology. The single polypeptide chain of apyrase is folded into two domains. The putative catalytic site with the apyrase conserved regions (ACR 1-5) is located between these two domains. Modeling confirmed that apyrase belongs to the actin superfamily of proteins. The amino acids interacting with the nucleoside triphosphate substrate and probably involved in the catalyzed hydrolysis were identified. The proposed two-step catalytic mechanism of hydrolysis involves Thr127 and Thr55 as potential nucleophilic factors responsible for the cleavage of the Pgamma and Pbeta anhydride bonds, respectively. Their action seems to be assisted by Glu170 and Glu78 residues, respectively. The presence of two nucleophiles in the active site of apyrase explains the differences in the hydrolytic activity between apyrases and other enzymes belonging to the NTPDase family.  相似文献   

17.
18.
In flowering plants, the vegetative nucleus and the two sperm cells are proposed to form a functional assemblage, the male germ unit (MGU). Here, we describe the developmental pathway of MGU assembly in Arabidopsis and report two classes of mutations that affect the integrity and/or the positioning of the MGU in the mature pollen grain. In germ unit malformed (gum) mutants, the vegetative nucleus is positioned adjacent to the pollen grain wall, separate from the two sperm cells, whereas in MGU displaced (mud) mutants, the intact MGU is displaced to the pollen grain wall. mud and gum mutants correspond to male-specific gametophytic mutations that also reduce pollen fitness. Genetic mapping showed that the gum1 and gum2 mutations are genetically linked, possibly allelic, whereas the mud1 and mud2 mutations correspond to two unlinked loci mapping on different chromosomes. The hierarchical relationship between mud and gum mutations was investigated by phenotypic analysis of double mutants. gum1 appeared to act earlier than mud1 and mud2, affecting initial MGU assembly and its stability during pollen maturation. In contrast, mud1 and mud2 mutations appear to act only on MGU positioning during final maturation. From in planta analyses of pollen germination in mud and gum mutants, we conclude that the initial proximity and positioning of MGU components is not required for their entrance into the pollen tube, but the efficiency of MGU translocation is reduced.  相似文献   

19.
20.
Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7 mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.

Autoinhibited Ca2+ pumps in the endoplasmic reticulum make important contributions to controlling the magnitude and duration of Ca2+ signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号