首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To deliver their genetic material into host cells, enveloped viruses have surface glycoproteins that actively cause the fusion of the viral and cellular membranes. Recently determined X-ray crystal structures of the paramyxovirus fusion (F) protein in its pre-fusion and post-fusion conformations reveal the dramatic structural transformation that this protein undergoes while causing membrane fusion. Conformational changes in key regions of the F protein suggest the mechanism by which the F protein is activated and refolds.  相似文献   

2.
Tsurudome M 《Uirusu》2005,55(2):207-219
The majority of viral fusion proteins can be divided into two classes. The influenza hemagglutinin (HA) belongs to the class I fusion proteins and undergoes a series of conformational changes at acidic pH, leading to membrane fusion. The crystal structures of the prefusion and the postfusion forms of HA have been revealed in 1981 and 1994, respectively. On the basis of these structures, a model for the mechanism of membrane fusion mediated by the conformational changes of HA has been proposed. The flavivirus E and alphavirus E1 proteins belong to the class II fusion proteins and mediate membrane fusion at acidic pH. Their prefusion structures are distinct from that of HA. Last year, however, it has become evident that the postfusion structures of these class I and class II fusion proteins are similar. The paramyxovirus F protein belongs to the class I fusion proteins. In contrast to HA, an interaction between F and its homologous attachment protein is required for F to undergo the conformational changes. Since F mediates fusion at neutral pH, the infected cells can fuse with neighboring uninfected cells. The crystal structures of F and the attachment protein HN have recently been clarified, which will facilitate studies of the molecular mechanism of F-mediated membrane fusion.  相似文献   

3.
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.  相似文献   

4.
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

5.
Structure and function of a paramyxovirus fusion protein   总被引:21,自引:0,他引:21  
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

6.
The paramyxovirus fusion (F) protein mediates membrane fusion. The biologically active F protein consists of a membrane distal subunit F2 and a membrane anchored subunit F1. A highly stable structure has been identified comprised of peptides derived from the simian virus 5 (SV5) F1 heptad repeat A, which abuts the hydrophobic fusion peptide (peptide N-1), and the SV5 F1 heptad repeat B, located 270 residues downstream and adjacent to the transmembrane domain (peptides C-1 and C-2). In isolation, peptide N-1 is 47% alpha-helical and peptide C-1 and C-2 are unfolded. When mixed together, peptides N1 + C1 form a thermostable (Tm > 90 degrees C), 82% alpha-helical, discrete trimer of heterodimers (mass 31,300 M(r)) that is resistant to denaturation by 2% SDS at 40 degrees C. The authors suggest that this alpha-helical trimeric complex represents the core most stable form of the F protein that is either fusion competent or forms after fusion has occurred. Peptide C-1 is a potent inhibitor of both the lipid mixing and aqueous content mixing fusion activity of the SV5 F protein. In contrast, peptide N-1 inhibits cytoplasmic content mixing but not lipid mixing, leading to a stable hemifusion state. Thus, these peptides define functionally different steps in the fusion process. The parallels among both the fusion processes and the protein structures of paramyxovirus F proteins, HIV gp41 and influenza virus haemagglutinin are discussed, as the analogies are indicative of a conserved paradigm for fusion promotion among fusion proteins from widely disparate viruses.  相似文献   

7.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

8.
Immunovirological studies suggest that human respiratory syncytial virus may well be composed of five structural proteins as are other members of the Paramyxoviridae family: the two external membrane glycoproteins H (90 000) and Fo (F1, 49 000; F2, 20 000; disulfide linked), the internal membrane protein M (34 000), the nucleoprotein N (42 000), and a protein (78 000) designated P that could be the equivalent of the polymerase of the morbillivirus and paramyxovirus genus. Neutralizing monoclonal antibodies showed, by immunoprecipitation and immunoblotting, that the fusion protein carries neutralizing epitopes. One monoclonal antibody, which shows a high neutralizing titer, immunoblotted directly with the F1 fragment (49 000) of the fusion protein. Analysis in mice of the immunogenicity of the structural proteins separated on sodium dodecyl sulphate gels indicated that, under our conditions, only the fusion protein dimer Fo and its F1 fragment were capable of inducing neutralizing antibodies.  相似文献   

9.
To enter cells, enveloped viruses use fusion-mediating glycoproteins to facilitate the merger of the viral and host cell membranes. These glycoproteins undergo large-scale irreversible refolding during membrane fusion. The paramyxovirus parainfluenza virus 5 mediates membrane merger through its fusion protein (F). The transmembrane (TM) domains of viral fusion proteins are typically required for fusion. The TM domain of F is particularly interesting in that it is potentially unusually long; multiple calculations suggest a TM helix length between 25 and 48 residues. Oxidative cross-linking of single-cysteine substitutions indicates the F TM trimer forms a helical bundle within the membrane. To assess the functional role of the paramyxovirus parainfluenza virus 5 F protein TM domain, alanine scanning mutagenesis was performed. Two residues located in the outer leaflet of the bilayer are critical for fusion. Multiple amino acid substitutions at these positions indicate the physical properties of the side chain play a critical role in supporting or blocking fusion. Analysis of intermediate steps in F protein refolding indicated that the mutants were not trapped at the open stalk intermediate or the prehairpin intermediate. Incorporation of a known F protein destabilizing mutation that causes a hyperfusogenic phenotype restored fusion activity to the mutants. Further, altering the curvature of the lipid bilayer by addition of oleic acid promoted fusion of the F protein mutants. In aggregate, these data indicate that the TM domain plays a functional role in fusion beyond merely anchoring the protein in the viral envelope and that it can affect the structures and steady-state concentrations of the various conformational intermediates en route to the final postfusion state. We suggest that the unusual length of this TM helix might allow it to serve as a template for formation of or specifically stabilize the lipid stalk intermediate in fusion.  相似文献   

10.
The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed.  相似文献   

11.
The paramyxovirus entry machinery consists of two glycoproteins that tightly cooperate to achieve membrane fusion for cell entry: the tetrameric attachment protein (HN, H, or G, depending on the paramyxovirus genus) and the trimeric fusion protein (F). Here, we explore whether receptor-induced conformational changes within morbillivirus H proteins promote membrane fusion by a mechanism requiring the active destabilization of prefusion F or by the dissociation of prefusion F from intracellularly preformed glycoprotein complexes. To properly probe F conformations, we identified anti-F monoclonal antibodies (MAbs) that recognize conformation-dependent epitopes. Through heat treatment as a surrogate for H-mediated F triggering, we demonstrate with these MAbs that the morbillivirus F trimer contains a sufficiently high inherent activation energy barrier to maintain the metastable prefusion state even in the absence of H. This notion was further validated by exploring the conformational states of destabilized F mutants and stabilized soluble F variants combined with the use of a membrane fusion inhibitor (3g). Taken together, our findings reveal that the morbillivirus H protein must lower the activation energy barrier of metastable prefusion F for fusion triggering.  相似文献   

12.
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.  相似文献   

13.
The membrane fusion reaction promoted by the paramyxovirus simian virus 5 (SV5) and human parainfluenza virus type 3 (HPIV-3) fusion (F) proteins and hemagglutinin-neuraminidase (HN) proteins was characterized when the surface densities of F and HN were varied. Using a quantitative content mixing assay, it was found that the extent of SV5 F-mediated fusion was dependent on the surface density of the SV5 F protein but independent of the density of SV5 HN protein, indicating that HN serves only a binding function in the reaction. However, the extent of HPIV-3 F protein promoted fusion reaction was found to be dependent on surface density of HPIV-3 HN protein, suggesting that the HPIV-3 HN protein is a direct participant in the fusion reaction. Analysis of the kinetics of lipid mixing demonstrated that both initial rates and final extents of fusion increased with rising SV5 F protein surface densities, suggesting that multiple fusion pores can be active during SV5 F protein-promoted membrane fusion. Initial rates and extent of lipid mixing were also found to increase with increasing influenza virus hemagglutinin protein surface density, suggesting parallels between the mechanism of fusion promoted by these two viral fusion proteins.  相似文献   

14.
During viral entry, the paramyxovirus fusion (F) protein fuses the viral envelope to a cellular membrane. Similar to other class I viral fusion glycoproteins, the F protein has two heptad repeat regions (HRA and HRB) that are important in membrane fusion and can be targeted by antiviral inhibitors. Upon activation of the F protein, HRA refolds from a spring-loaded, crumpled structure into a coiled coil that inserts a hydrophobic fusion peptide into the target membrane and binds to the HRB helices to form a fusogenic hairpin. To investigate how F protein conformational changes are regulated, we mutated in the Sendai virus F protein a highly conserved 10-residue sequence in HRA that undergoes major structural changes during protein refolding. Nine of the 15 mutations studied caused significant defects in F protein expression, processing, and fusogenicity. Conversely, the remaining six mutations enhanced the fusogenicity of the F protein, most likely by helping spring the HRA coil. Two of the residues that were neither located at "a" or "d" positions in the heptad repeat nor conserved among the paramyxoviruses were key regulators of the folding and fusion activity of the F protein, showing that residues not expected to be important in coiled-coil formation may play important roles in regulating membrane fusion. Overall, the data support the hypothesis that regions in the F protein that undergo dramatic changes in secondary and tertiary structure between the prefusion and hairpin conformations regulate F protein expression and activation.  相似文献   

15.
Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family.  相似文献   

16.
Hendra virus (HeV) is a recently identified paramyxovirus that is fatal in humans and could be used as an agent of bioterrorism. The HeV receptor-binding protein (G) is required in order for the fusion protein (F) to mediate fusion, and analysis of the triggering/activation of HeV F by G should lead to strategies for interfering with this key step in viral entry. HeV F, once triggered by the receptor-bound G, by analogy with other paramyxovirus F proteins, undergoes multistep conformational changes leading to a six-helix bundle (6HB) structure that accomplishes fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions (HRN and HRC) near the fusion peptide and the transmembrane domains, respectively. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing F, after the initial triggering step, from forming the 6HB structure that is required for fusion. HeV peptides have previously been found to be effective at inhibiting HeV fusion. However, we found that a human parainfluenza virus 3 F-peptide is more effective at inhibiting HeV fusion than the comparable HeV-derived peptide.  相似文献   

17.
Gardner AE  Martin KL  Dutch RE 《Biochemistry》2007,46(17):5094-5105
Paramyxoviruses are a diverse family that utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of the F protein are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30 degrees C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30 and 37 degrees C, indicating that this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F (Yin, H. S., et al. (2006) Nature 439, 38-44) indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from this important viral family and can also modulate subsequent membrane fusion promotion.  相似文献   

18.
Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation.  相似文献   

19.
Paramyxoviruses are a leading cause of childhood illness worldwide. A recently discovered paramyxovirus, human metapneumovirus (hMPV), has been studied by our group in order to determine the structural relevance of its fusion (F) protein to other well-characterized viruses utilizing type I integral membrane proteins as fusion aids. Sequence analysis and homology models suggested the presence of requisite heptad repeat (HR) regions. Synthetic peptides from HR regions 1 and 2 (HR-1 and -2, respectively) were induced to form a thermostable (melting temperature, approximately 90 degrees C) helical structure consistent in mass with a hexameric coiled coil. Inhibitory studies of hMPV HR-1 and -2 indicated that the synthetic HR-1 peptide was a significant fusion inhibitor with a 50% inhibitory concentration and a 50% effective concentration of approximately 50 nM. Many viral fusion proteins are type I integral membrane proteins utilizing the formation of a hexameric coiled coil of HR peptides as a major driving force for fusion. Our studies provide evidence that hMPV also uses a coiled-coil structure as a major player in the fusion process. Additionally, viral HR-1 peptide sequences may need further investigation as potent fusion inhibitors.  相似文献   

20.
It is unknown how receptor binding by the paramyxovirus attachment proteins (HN, H, or G) triggers the fusion (F) protein to fuse with the plasma membrane for cell entry. H-proteins of the morbillivirus genus consist of a stalk ectodomain supporting a cuboidal head; physiological oligomers consist of non-covalent dimer-of-dimers. We report here the successful engineering of intermolecular disulfide bonds within the central region (residues 91-115) of the morbillivirus H-stalk; a sub-domain that also encompasses the putative F-contacting section (residues 111-118). Remarkably, several intersubunit crosslinks abrogated membrane fusion, but bioactivity was restored under reducing conditions. This phenotype extended equally to H proteins derived from virulent and attenuated morbillivirus strains and was independent of the nature of the contacted receptor. Our data reveal that the morbillivirus H-stalk domain is composed of four tightly-packed subunits. Upon receptor binding, these subunits structurally rearrange, possibly inducing conformational changes within the central region of the stalk, which, in turn, promote fusion. Given that the fundamental architecture appears conserved among paramyxovirus attachment protein stalk domains, we predict that these motions may act as a universal paramyxovirus F-triggering mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号