首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A unique property of Drosophila melanogaster l(1)ts403 strain with the defect in heat shock protein system (HSP) is high frequency of losses and non-disjunction of sex chromosomes induced by heat shock (HS) (37 degrees C, 1 h). This effect was shown in only 6-14-th stages of oocytes. Anoxia was not effective in induction of these mutations. Successive action of anoxia and HS decreased loss frequency and non-disjunction in comparison with the only action of HS. These findings agree with the data in literature indicating that HSP synthesis was increased in the l(1)ts403 mutant when first anoxia and then HS were administered, in contrast to the action of HS only. The role of HSP in the recovery of HS-induced disruptions (chromosomal proteins and meiotic division apparatus) which can lead to chromosome non-disjunction and losses is discussed.  相似文献   

2.
Synthesis of a family of proteins called “heat shock” proteins is enhanced in cells in response to a wide variety of environmental stresses. This suggests that these proteins may have functions essential to cell survival under stressful conditions. A causative relationship between heat shock protein synthesis and development of thermotolerance would imply that agents known to induce heat shock protein synthesis, such as sodium arsenite, also induce thermotolerance. Conversely, agents known to induce thermotolerance, such as ethanol, would also enhance heat shock protein synthesis. To test this hypothesis, I have examined the effect of sodium arsenite or ethanol treatment on protein synthesis and cell survival in Chinese hamster ovary HA-1 cells. After either sodium arsenite or ethanol treatment, the synthesis of heat shock proteins was greatly enhanced over that of untreated cells. In parallel, cell survival was increased as much as 104-fold when cells exposed to either agent were challenged by a subsequent heat treatment. The synthesis of heat shock proteins correlated well with the development of thermotolerance. A qualitative analysis of individual proteins suggests that the synthesis of 70,000 and 87,000 molecular weight proteins most closely mirrored the development of thermotolerance. The results, therefore, strongly reinforce the hypothesis that a causal relationship exists between the enhanced synthesis of heat shock protein and cell survival under specific stresses.  相似文献   

3.
The sbr gene of Drosophila melanogaster belongs to the NXF (nuclear export factor) family responsible for the mRNA transport from nucleus to cytoplasm. We have shown that in the heat-exposed (37 degrees C, 1 h) females, the l(1)ts403 (sbr10) mutation leads, in particular, to the high-frequency nondisjunction and loss of sex chromosomes in meiosis. For this trait, the incomplete dominance of the sbr10 mutation is observed. At the same time, the sbr10 mutation is recessive for many other traits of the heat-exposed flies: reduced viability, low fertility, impaired synthesis of the heat shock proteins, etc. The females heterozygous for the null allele (Df(1)vL4, a deletion eliminating gene srb) do not differ from females homozygous for the wild-type allele in frequency of the heat shock-induced nondisjunction and loss of sex chromosomes in meiosis. Because of this, the sbr10 mutation can be assigned to the gain-of-function alleles (those gaining the dominance function). Expression of the mutant sbr10 allele against the background of the wild-type allele suggests that in the heat shock-exposed females, the heat-modified product of this ts allele has a strong effect on sex chromosome disjunction in meiosis.  相似文献   

4.
Heat shock response in mycoplasmas, genome-limited organisms.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have measured the effect of heat shock on three mycoplasmas (Acholeplasma laidlawii K2 and JA1 and Mycoplasma capricolum Kid) and demonstrated the induction of mycoplasma heat shock proteins under these conditions. Increased synthesis of at least 5 heat shock proteins in A. laidlawii K2, 11 heat shock proteins in A. laidlawii JA1, and 7 heat shock proteins in M. capricolum was observed by electrophoretic analysis of proteins from heat-shocked cells in sodium dodecyl sulfate-polyacrylamide gels. In all three strains, major heat shock proteins (66 to 68 and 26 to 29 kilodaltons [kDa]) were found. The 66- to 68-kDa protein cross-reacted with antibody to Escherichia coli DnaK protein, suggesting that this heat shock protein has been conserved in spite of major reductions in genetic complexity during mycoplasma evolution. A. laidlawii also contained a 60-kDa protein that cross-reacted with eubacterial GroEL protein and a 40-kDa protein that cross-reacted with E. coli RecA protein. Unlike with coliphages, the mycoplasma virus L2 progeny yield was not increased when virus was plated on heat-shocked A. laidlawii host cells. However, UV-irradiated L2 virus could be host cell reactivated by both A. laidlawii SOS repair and heat shock systems.  相似文献   

5.
High soil temperatures in tropical areas limit nodulation and dinitrogen fixation by strains of Rhizobium. Several heat-tolerant bean-nodulating Rhizobium strains have been isolated previously. However, the basis of their resistance to heat remains unknown. In this study, we compared the effects of heat on symbiotic nitrogen fixation, cell survival, amino acid uptake, and protein synthesis in a heat-tolerant (CIAT899) and a heat-sensitive (CNPAF512) bean-nodulating Rhizobium strain. Acetylene reduction activity of nodulated roots excised from unstressed plants was strongly diminished at 35 or 40 degrees C when plants were nodulated either by CIAT899 or by CNPAF512. When these strains were tested under free-living conditions, survival at 40 degrees C as well as the kinetics of l-[S]methionine uptake and protein synthesis at 35 and 40 degrees C indicated the higher tolerance of CIAT899 than of CNPAF512 to thermal stress. The synthesis of heat shock proteins was detected in both strains, although at different temperatures. Increased synthesis of 14 heat shock proteins in CNPAF512 and of 6 heat shock proteins in CIAT899 was observed at 40 and 45 degrees C, respectively. A heat shock protein of approximately 21 kDa, of which the synthesis was strongest in both Rhizobium strains upon a temperature shift up, was also conserved in several other bean-nodulating rhizobia. Acquired thermotolerance in CIAT899 was shown to depend on protein synthesis.  相似文献   

6.
When Aedes albopictus cells (clone C7) were infected with Sindbis virus, the production of cytopathic effect CPE depended largely on the conditions under which the cells were cultured. We observed marked inhibition of cellular RNA and protein synthesis, as well as a loss of the ability to induce heat shock proteins, e.g., hsp70, under conditions which led to cytopathic effect. Infected cells in which heat shock proteins could no longer be induced contained much lower amounts of hsp70 mRNA after heat shock than did mock-infected cells which were similarly treated. It is suggested that this decreased level of hsp70 mRNA is due to a failure of these cells to synthesize hsp70 mRNA after heat shock.  相似文献   

7.
Heat shock response of the rat lens   总被引:9,自引:0,他引:9       下载免费PDF全文
The sequence relationship between the small heat shock proteins and the eye lens protein alpha-crystallin (Ingolia, T. D., and E. E. Craig, 1982, Proc. Natl. Acad. Sci. USA, 79: 2360-2364) prompted us to subject rat lenses in organ culture to heat shock and other forms of stress. The effects on protein synthesis were followed by labeling with [35S]methionine and analysis by one- and two-dimensional gel electrophoresis and fluorography. Heat shock gave a pronounced induction of a protein that could be characterized as the stress protein SP71. This protein probably corresponds to the major mammalian heat shock protein hsp70. Also two minor proteins of 16 and 85 kD were induced, while the synthesis of a constitutive heat shock-related protein, P73, was considerably increased. The synthesis of SP71 started between 30 and 60 min after heat shock, reached its highest level after 3 h, and had stopped again after 8 h. In rat lenses that were preconditioned by an initial mild heat shock, a subsequent shock did not cause renewed synthesis of SP71. This effect resembles the thermotolerance phenomenon observed in cultured cells. The proline analogue azetidine-2-carboxylic acid, zinc chloride, ethanol, and calcium chloride did not, under the conditions used, induce stress proteins in the rat lens. Sodium arsenite, however, had very much the same effects as heat shock. Calcium ionophore A23187 specifically and effectively induced the synthesis of the glucose-regulated protein GRP78. No special response to stress on crystallin synthesis was noticed.  相似文献   

8.
The heat shock response of Escherichia coli is under the positive control of the sigma 32 protein (the product of the rpoH gene). We found that overproduction of the sigma 32 protein led to concomitant overproduction of the heat shock proteins, suggesting that the intracellular sigma 32 levels limit heat shock gene expression. In support of this idea, the intracellular half-life of the sigma 32 protein synthesized from a multicopy plasmid was found to be extremely short, e.g., less than 1 min at 37 and 42 degrees C. The half-life increased progressively with a decrease in temperature, reaching 15 min at 22 degrees C. Finally, conditions known previously to increase the rate of synthesis of the heat shock proteins, i.e., a mutation in the dnaK gene or expression of phage lambda early proteins, were shown to simultaneously result in a three- to fivefold increase in the half-life of sigma 32.  相似文献   

9.
High thermosensitivity of early embryos controlled by mutation l(1)ts403 with disturbed heat-shock response was studied. Thermosensitivity was examined in early (0-1 h) and late (3.5-4.5 h) embryos obtained by reciprocal crosses and backcrosses. It was shown that mutation l(1)ts403 lacks maternal effect. In progeny of reciprocal crosses, early embryonic thermosensitivity was intermediate with regard to that of progeny obtained by interlinear crosses. In early embryos of Drosophila, zygotic genes are not expressed and synthesis heat-shock protein synthesis is not induced. Based on this, it was proposed that the product of gene l(1)ts403, which affects early embryonic thermosensitivity, is transmitted both paternally and maternally and shows dosage effect.  相似文献   

10.
Summary Tobacco mosaic virus (TMV) protein synthesis in tobacco leaf tissue was not translationally regulated under conditions of heat shock as were most of the other proteins that were produced at 25°C. Upon shift from 25°C to 37–40°C, most host protein synthesis was inhibited followed by initiation of synthesis of heat shock proteins. In contrast, TMV protein synthesis continued after the temperature shift. This phenomenon allowed the enhancement of detection of TMV protein synthesis in tobacco leaves. The most prominent proteins labeled were viral when tissue was labeled during the first hr following the shift to 40°C, a period after heat shock repression of host protein synthesis, but before the onset of most heat shock protein synthesis. Another method to predominately label viral proteins was to incubate infected leaves for periods at 35°C which induced repression of preexisting host protein synthesis without inducing synthesis of heat shock proteins.  相似文献   

11.
Pupae of Drosophila melanogaster were heat-shocked under conditions required to induce phenocopies in more than 90% of the flies that subsequently emerge. The effects of these treatments on protein synthesis in two tissues (thoracic epithelium and brain) were followed for several hours after the heat treatments. Results from pulse-labeling and protein separations on sodium dodecylsulfate (SDS) acrylamide gels showed a virtually complete cessation of protein synthesis immediately after the shock, followed by a noncoordinate resumption of the starting pattern. Similar experiments following double heat shocks demonstrated a more rapid resumption of synthesis of heat shock proteins after two successive heat treatments than after a single one.  相似文献   

12.
The structures and functions of many genes are homologous in Drosophila and humans. Therefore, studying pathological processes in Drosophila, in particular neurogenerative processes accompanied by progressive memory loss, helps to understand the ethiology of corresponding human disorders and to develop therapeutic strategies. It is believed that the development of neurogenerative diseases might result from alterations in the functioning of the heat shock/chaperone machinery. In view of this, we used Drosophila mutant l(1)ts403 with defective synthesis of heat shock proteins for studying learning and memory in a test of conditioned courtship suppression following a heat shock given at different developmental stages. High learning indices were registered immediately and 30 min after training both in the intact controls and in flies subjected to different developmental heat shocks. This indicated normal learning and memory acquisition in the mutant. At the same time, memory retention (3 h after training) suffered to different extent depending on the developmental stage. The remote effects of heat shock given during the formation of the mushroom bodies indicated the important role of this brain structure in the memory formation. The observed memory defects may result from alterations both in mRNA transport and in the functions of molecular chaperones in the l(1)ts403 mutant.  相似文献   

13.
14.
Lysis of Escherichia coli by the cloned E protein of bacteriophage phi X174 was more rapid than expected when bacteria were shifted from 30 to 42 degrees C at the time of E induction. Since such treatment also induces the heat shock response, we investigated the effect of heat shock proteins on lysis. An rpoH mutant was more sensitive to lysis by E, but a secondary suppressor mutation restored lysis resistance to parental levels, which suggests that the sigma 32 subunit itself did not directly increase lysis resistance. At 30 degrees C, mutants in five heat shock genes (dnaK, dnaJ, groEL, groES, and grpE) were more sensitive to lysis than were their wild-type parents. The magnitude of lysis sensitivity varied with mutation and strain background, with dnaK, dnaJ, and groES mutants consistently exhibiting the greatest sensitivities. Extended protection against lysis occurred when overproduction of heat shock proteins was induced artificially in cells that contained a plasmid with the rpoH+ gene under control of the tac promoter. This protective effect was completely abolished by mutations in dnaK, dnaJ, or groES but not by grpE or groEL mutations. Altered membrane behavior probably explains the contradiction whereby an actual temperature shift sensitized cells to lysis, but production of heat shock proteins exhibited protective effects. The results demonstrate that E-induced lysis can be divided into two distinct operations which may now be studied separately. They also emphasize a role for heat shock proteins under non-heat-shock conditions and suggest cautious interpretation of lysis phenomena in systems where E protein production is under control of a temperature-sensitive repressor.  相似文献   

15.
The effect of overproduction of the Hsp70 system proteins (DnaK, DnaJ, GrpE) and/or ClpB (Hsp100) from plasmids on the process of formation and removal of heat-aggregated proteins from Escherichia coli cells (the S fraction) was investigated by sucrose density gradient centrifugation. Two plasmids were employed: pKJE7 carrying the dnaK/dnaJ/grpE genes under the control of the araB promoter and pClpB carrying the clpB gene under the control of its own promoter (sigma(32)-dependent). In the wild-type cells the S fraction after 15 min of heat shock amounted to 21% of cellular insoluble proteins (IP), and disappeared 10 min after transfer of the culture to 37 degrees C. In contrast to this, in the clpB mutant the S fraction was larger (35% IP) and its elimination was retarded, nearly 60% of the aggregated proteins remained stable 30 min after heat shock. This result points to the importance of ClpB in removal of the heat-aggregated proteins from cells. Overproduction of the Hsp70 system proteins (exceeding by about 1.5-fold that of wild-type) in wild-type and DeltaclpB cells completely prevented the formation of the S fraction during heat shock. Overproduction of ClpB (exceeding by about eight-fold that of wild-type) in the same background did not prevent protein aggregation after heat shock and only partly compensated for the effect of the mutation in the clpB gene. Monitoring the S fraction during co-production of DnaK/DnaJ/GrpE and ClpB in the DeltaclpB mutant revealed that both the levels of expression and the ratios of ClpB to Hsp70 system proteins had a significant effect on the formation and removal of protein aggregates in heat-shocked E. coli cells. In the presence of excess ClpB, an increase in the levels of DnaK, DnaJ and GrpE was required to prevent aggregate formation upon heat shock or to efficiently remove protein aggregates after heat shock. Therefore, it is supposed that a high level of ClpB under some conditions, especially at insufficient levels of Hsp70 system proteins, may support protein aggregation resulting from heat shock and may lead to stabilization of hydrophobic aggregates.  相似文献   

16.
17.
18.
The rate of total RNA synthesis, the extent of guanosine 3'(2')-diphosphate 5'-diphosphate (ppGpp) accumulation, and the pattern of protein synthesis were studied in light-deprived and heat-shocked Synechococcus sp. strain PCC 6301 cells. There was an inverse correlation between the rate of total RNA synthesis and the pool of ppGpp, except immediately after a temperature shift up, when a parallel increase in the rate of RNA synthesis and accumulation of ppGpp was observed. The inverse correlation between RNA synthesis and ppGpp accumulation was more pronounced when cells were grown in the dark. Heat shock treatment (47 degrees C) had an unexpected effect on ppGpp accumulation; there was a fairly stable level of ppGpp under heat shock conditions, which coincided with a stable steady-state rate of RNA synthesis even in the dark. We found that the pattern of dark-specific proteins was altered in response to heat shock. The transient synthesis of several dark-specific proteins was abolished by an elevated temperature (47 degrees C) in the dark; moreover, the main heat shock proteins were synthesized even in the dark. This phenomenon might be of aid in the study of cyanobacterial gene expression.  相似文献   

19.
A number of clinical conditions are known to result in the induction of heat shock proteins, but detailed studies on stress response have focused mostly on heat shock as a model. We have analyzed the induction and intracellular distribution of heat shock proteins in a reversible adenosine triphosphate (ATP) depletion model of renal ischemia. Two Hsp70 homologues, Hsp70 in the cytoplasm and BiP in the endoplasmic reticulum (ER) lumen, were found significantly induced during the recovery phase of ATP depletion. Other members of the heat shock protein family, such as Hsp90, constitutive Hsc70, and a related protein Hop60, were not induced. The induction of stress proteins on ATP depletion differed from that after heat shock in the kinds of proteins elaborated, their induction kinetics, and their intracellular distributions. Biochemical fractionation and indirect immunofluorescence experiments indicated that Hsp70 was predominantly cytoplasmic in the recovery phase of ischemia-like stress. Velocity sedimentation on sucrose gradients showed that induced Hsp70 sedimented as small, soluble complexes, ranging in size from 4S20,w to 8S20,w. The results suggest a role for induced Hsp70 that may be different from one of protecting aggregated proteins as under heat shock and emphasize the need for their characterization in other clinical conditions that result in stress response.  相似文献   

20.
We identified two rpoH-related genes encoding sigma32-like proteins from Sinorhizobium meliloti, a nitrogen-fixing root-nodule symbiont of alfalfa. The genes, rpoH1 and rpoH2, are functionally similar to rpoH of Escherichia coli because they partially complemented an E. coli rpoH null mutant. We obtained evidence indicating that these genes are involved in the heat shock response in S. meliloti. Following an increase in temperature, synthesis of several putative heat shock proteins (Hsps) was induced in cultures of wild-type cells: the most prominent were 66- and 60-kDa proteins, both of which are suggested to represent GroEL species. The other Hsps could divided into two groups based on differences in synthesis kinetics: synthesis of the first group peaked 5-10 min, and expression of the other group 30 min, after temperature upshift. In the rpoH1 mutant, inducible synthesis of the former group was markedly reduced, whereas that of the latter group was not affected. Synthesis of both the 66- and 60-kDa proteins was partially reduced. While no appreciable effect was observed in the rpoH2 single mutant, the rpoH2 mutation had a synergistic effect on the 60-kDa protein in the rpoH1- background. The results indicate that two distinct mechanisms are involved in the heat shock response of S. meliloti: one requires the rpoH1 function, while rpoH2 can substitute in part for the rpoH1 function. Moreover, the rpoH1 mutant and rpoH1 rpoH2 double mutant exhibited Nod+ Fix- and Nod- phenotypes, respectively, on alfalfa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号