首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When astroglial cells are exposed to beta-adrenergic agonists for long periods of time (greater than 20 min), transient increases in taurine release and intracellular cyclic AMP (cAMP) are observed. Three phases of taurine release can be distinguished: activation, inactivation, and an elevated steady state. In this article, we present data describing the relationship between intracellular cAMP levels and inactivation of taurine release. To do this, we compared the apparent first-order rate constants for the inactivation of taurine release (ktau) with the apparent first-order rate constant for the decline of intracellular cAMP (kcAMP). We also measured ktau under experimental conditions that were chosen to provide a wide range of intracellular cAMP concentrations or to stimulate release without the involvement of the beta-adrenergic receptor and adenylate cyclase. When taurine release was stimulated with a saturating concentration of isoproterenol, the inactivation of release was significantly faster than the decline of intracellular cAMP. Furthermore, there were no significant differences in ktau measured under any of the experimental conditions used. Thus, inactivation of taurine release does not involve changes in the activity of the beta-adrenergic receptor and adenylate cyclase, i.e., desensitization, and appears to be independent of the intracellular concentration of cAMP. These results indicate that cAMP-mediated events can be regulated by mechanism(s) in addition to those that control receptor-adenylate cyclase interactions and the synthesis of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Virtually all known biological actions stimulated by beta-adrenergic and other adenylate cyclase coupled receptors are mediated by cAMP-dependent protein kinase. Nonetheless, "homologous" or beta-adrenergic agonist-specific desensitization does not require cAMP. Since beta-adrenergic receptor phosphorylation may be involved in desensitization, we studied agonist-promoted receptor phosphorylation during homologous desensitization in wild-type S49 lymphoma cells (WT) and two mutants defective in the cAMP-dependent pathway of beta-agonist-stimulated protein phosphorylation (cyc- cannot generate cAMP in response to beta-adrenergic agonists; kin- lacks cAMP-dependent kinase). All three cell types demonstrate rapid, beta-adrenergic agonist-promoted, stoichiometric phosphorylation of the receptor which is clearly not cAMP mediated. The amino acid residue phosphorylated is solely serine. These data demonstrate, for the first time, that catecholamines can promote phosphorylation of a cellular protein (the beta-adrenergic receptor) via a cAMP-independent pathway. Moreover, the ability of cells with mutations in the adenylate cyclase-cAMP-dependent protein kinase pathway to both homologously desensitize and phosphorylate the beta-adrenergic receptors provides very strong support for the notion that receptor phosphorylation may indeed be central to the molecular mechanism of desensitization.  相似文献   

3.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

4.
In freshly isolated parenchymal hepatocytes of adult rats, the beta-adrenergic agonist isoproterenol (Ip) did not stimulate cAMP formation, protein kinase activity, or glycogenolysis, although glucagon markedly stimulated all these activities. However, the beta-adrenergic response appeared when rat hepatocytes were cultured as monolayers. This response had already appeared after 2-h culture and increased during further culture. The appearance of the beta-adrenergic response during culture was blocked by cycloheximide, actinomycin D, or alpha-amanitin. Thus adult rat hepatocytes acquired marked ability to respond to Ip during culture through the syntheses of mRNA and protein. Freshly isolated hepatocytes from postnatal rats showed a high beta-adrenergic response that did not increase further during culture. This response gradually decreased during development and had almost disappeared about 60 days after birth. In plasma membranes prepared from freshly isolated cells of adult rats the basal and NaF-stimulated activities of adenylate cyclase (EC 4.6.1.1) were similar to those of cultured cells and the enzyme activity was also stimulated by guanyl-5'-yl imidodiphosphate. However, in plasma membranes of freshly isolated cells Ip scarcely stimulated adenylate cyclase, but glucagon did. The intact cells, whether they were freshly isolated or cultured, accumulated cAMP when exposed to cholera toxin. Moreover, the two subunits of GTP-binding regulatory protein (also named G/F or Ns site) were detected by [32P]ADP ribosylation with cholera toxin and [32P]NAD+ in freshly isolated cells as well as in cultured cells. These results indicate that freshly isolated and cultured hepatocytes of adult rats contain sufficient levels of all the components of the postreceptor-adenylate cyclase system for activity. However, the number of beta-adrenergic receptors measured by binding of [125I]iodocyanopindolol, a potent beta-adrenergic antagonist, was very low in purified plasma membranes of freshly isolated cells (20 fmol/mg of protein), and the number increased about 6-fold without change in the dissociation constant (Kd = 132 pM) when the cells were cultured for 7 h. This increase in beta-adrenergic receptor sites was completely abolished by cycloheximide and alpha-amanitin. Thus it is concluded that the unresponsiveness of adult rat hepatocytes to Ip was due to a very low amount of beta-adrenergic receptor and that the appearance of a beta-adrenergic response during primary culture was due to new synthesis of beta-adrenergic receptor through synthesis of mRNA.  相似文献   

5.
Beta-Adrenergic agonist-stimulated hyperpolarization, whole-cell cAMP accumulation, and activity of isoproterenol-stimulated membrane-bound adenylate cyclase (EC 4.6.1.1) in Xenopus laevis ovarian oocytes are entirely dependent on the presence of nascent follicle cells. A method was developed to remove rapidly and completely all extra-oocyte cell types to yield defolliculated oocytes that exhibited normal viability and resting membrane potentials yet lacked beta-adrenergic receptor (beta AR)-stimulated responses. Purified follicle membranes contained beta AR-stimulated adenylate cyclase activity, whereas oocyte cell membranes did not. Purified oocyte membrane preparations from X. laevis oocytes previously microinjected with C6-2B rat astrocytoma mRNA, and subsequently defolliculated, exhibited novel beta AR and forskolin-stimulated adenylate cyclase activity. These experiments demonstrate that oocytes expressed rat C6-2B mRNA coding for the beta-adrenergic receptor and the components necessary for forskolin-stimulated adenylate cyclase activity.  相似文献   

6.
Desensitization of turkey erythrocyte adenylate cyclase by exposure of these cells to the beta-adrenergic agonist isoproterenol leads to a decrease in subsequent adenylate cyclase stimulation by isoproterenol, F-, or Gpp(NH)p without any apparent loss or down regulation of receptors (B.B. Hoffman et al. J. Cyclic Nucl. Res. 5: 363-366, 1979). We now report that the desensitization is associated with a functional "uncoupling" of the beta-adrenergic receptor. This is evidenced by an impaired ability of receptors to form a high affinity, guanine nucleotide sensitive complex with agonist as assessed by computer analysis of radioligand binding data. The changes in adenylate cyclase responsiveness as well as the alterations in receptor affinity for agonists are reproduced by incubation of turkey erythrocytes with the cAMP analog 8-Bromo-adenosine 3':5'- cyclic monophosphate. These findings suggest that one possible mechanism for the development of desensitization in adenylate cyclase systems may be a cAMP mediated alteration of a component(s) of the beta-adrenergic receptor-adenylate cyclase complex which results in impaired receptor-cyclase coupling.  相似文献   

7.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

8.
The effects of pertussis toxin on the steady-state levels of G-protein alpha- and beta-subunits were investigated both in vitro and in vivo. The steady-state level Go alpha, a major substrate for pertussis toxin-catalyzed ADP-ribosylation, was unaltered by pertussis toxin treatment for periods up to 100 h for 3T3-L1 cells in culture or up to 3 days in vivo. In 3T3-L1 cells pertussis toxin treatment did not alter levels of Gs alpha-subunits; in S49 cells the level of Gs alpha-subunits declined moderately following by pertussis toxin treatment. The steady-state levels of G beta-subunits, in contrast, were found to decline to less than 50% of the normal cellular complement following pertussis toxin treatment in vitro and in vivo. Inhibitory control of adenylate cyclase, pertussis toxin-catalyzed ADP-ribosylation of Gi alpha and Go alpha, and the GTP-dependent shift in agonist-specific binding to beta-adrenergic receptors were attenuated or abolished within 5 h of pertussis toxin treatment, representing "early" effects of the toxin. Stimulatory regulation of adenylate cyclase, in contrast, displayed a progressive enhancement that was first observed 4 h after pertussis toxin treatment, increasing thereafter up until 100 h, the last time point measured. This progressive enhancement of the stimulatory pathway of adenylate cyclase was not manifest at the level of stimulatory receptors, since the Kd and Bmax for one such receptor, the beta-adrenergic receptor, were shown to be unaltered in toxin-treated cells. Furthermore, the potentiation of stimulation of adenylate cyclase was observed in cells stimulated by the beta-adrenergic agonist isoproterenol and PGE1 alike. The progressive enhancement of the stimulatory pathway correlated best with the decline in G beta-subunit levels that occurs following pertussis intoxication. The changes in both of these parameters occur "late" (12-48 h), as compared to the early events that occur within 5 h. Pertussis toxin action appears to be composed of two, temporally distinct, groups of effects. Pertussis toxin-catalyzed ADP-ribosylation of G alpha-subunits, attenuation of the inhibitory regulation of adenylate cyclase, and attenuation of the ability of GTP to induce an agonist-specific shift in receptor affinity are members of the early group of effects. The second group of late effects includes the decline in G beta-subunit levels and the progressive enhancement of the stimulatory pathway of adenylate cyclase. This enhanced stimulatory control at these later times cannot be explained by the attenuation of the inhibitory pathway occurring early, but rather appears as G beta-subunit levels decline.  相似文献   

9.
The relationship between hormone receptor number and hormone-stimulated cAMP accumulation was probed in CHO cells that were transfected with the cDNA encoding the beta-adrenergic receptor under the control of the SV40 early promoter (expression vector pSV2BAR). CHO cells were cotransfected with pSV2BAR and expression vector pHOMER that directs the expression of a neomycin-resistance gene, and stable transfectants were selected. Clones expressing receptor at levels from 30 (wild-type) to 6000 fmol/mg membrane protein were isolated and further characterized for receptor mRNA content (measured by solution hybridization with a single-stranded cDNA probe), steady-state expression of receptor (measured by immunoblotting and indirect immunofluorescence), and their ability to accumulate intracellular cAMP in response to a beta-adrenergic agonist. Receptor mRNA content and the steady-state level of receptor protein and its expression at the cell surface were found to increase with receptor density as measured by radioligand binding. Over a 200-fold range of receptor expression, CHO transfectants displayed increasing efficacy of agonist-stimulated cAMP accumulation and increasing maximal cAMP accumulation in response to agonist. These data provide for the first time an analysis of the relationship between the density of a G-protein-linked receptor and a receptor-mediated response under conditions where the levels of G-proteins and adenylate cyclase are unaltered.  相似文献   

10.
Role of glycosylation for beta 2-adrenoceptor function in A431 cells   总被引:3,自引:0,他引:3  
A431 cells incubated with tunicamycin (0.15 micrograms/ml) for 40 h under conditions where incorporation of [3H] leucine into protein was inhibited less than 10% expressed mainly a beta-receptor species of about Mr 40,000 which was ascribed to the nonglycosylated form of the beta-receptor of about Mr 75,000 found in normal A431 cells by photoaffinity labeling. However, the tunicamycin-treated cells expressed the same number of specific beta 2-receptor-binding sites as untreated cells. Moreover, the aglycoreceptors had the same ligand binding properties as beta-adrenoceptors from control cells; but, functional tests of the receptor from tunicamycin-treated cells in reconstituted lipid vesicles showed that receptors from tunicamycin-treated cells had lost coupling efficiency. The coupling defect was at the receptor level since control experiments indicated that the other components of the signal transmission chain from beta-adrenoceptor to adenylate cyclase, the stimulatory regulatory GTP-binding protein of adenylate cyclase and adenylate cyclase, were fully functional. Homologous desensitization in tunicamycin-treated cells was characterized by export from the cell surface and sequestration of about the same number of beta-adrenoceptors as in normal desensitized cells but without further reduction of hormonally stimulated adenylate cyclase below the low level already attained in nondesensitized tunicamycin-treated cells. This was explained by assuming that the receptors removed in the course of homologous desensitization from the surface of tunicamycin-treated cells were already nonfunctional. Thus, beta-adrenergic desensitization in tunicamycin-treated cells is characterized by the functional disengagement of receptor removal and loss of adenylate cyclase activity.  相似文献   

11.
Preincubation of turkey erythrocytes with beta-adrenergic agonists leads to an attenuation of the responsiveness of adenylate cyclase to subsequent hormonal stimulation. Recently, our laboratory has shown (Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. D., Caron, M. G., and Lefkowitz, R. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3173-3177) using 32Pi incorporation that phosphorylation of the beta-adrenergic receptor accompanies this desensitization process. We now report that, as determined from intracellular [gamma-32P] ATP specific activity measurements, this phosphorylation reaction occurs in a stoichiometric fashion. Under basal conditions there exists 0.75 +/- 0.1 mol of phosphate per mol of receptor whereas under maximally desensitized conditions this ratio increases to 2.34 +/- 0.13 mol/mol. This phosphorylation of the receptor is dose-dependent with respect to isoproterenol and exhibits a dose-response curve coincidental with that for isoproterenol-induced desensitization of adenylate cyclase. The time courses for receptor phosphorylation and adenylate cyclase desensitization are identical. In addition, the rate of resensitization of adenylate cyclase activity is comparable to the rate of return of the phosphate/receptor stoichiometries to control levels. Both the phosphorylation and desensitization reactions are pharmacologically specific as indicated by the high degree of stereoselectivity, rank order of catecholamines, and blockade by the specific beta-adrenergic antagonist, propranolol. Incubation of turkey erythrocytes with cAMP and cAMP analogs maximally activates cAMP-dependent protein kinase but only partially mimics isoproterenol in promoting phosphorylation of the receptor in concordance with their partial effects in inducing desensitization. Conversely, activators or inhibitors of Ca2+/calmodulin kinase or protein kinase C do not affect the isoproterenol-induced desensitization. These results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.  相似文献   

12.
The activity of the beta-adrenergic receptor/adenylate cyclase system of the marmoset monkey heart was investigated following dietary cholesterol supplementation (0.5%). After 22 weeks, plasma cholesterol levels in the cholesterol group were more than twice that of the control group. In the cholesterol-fed group, the affinity for ICYP binding to cardiac membranes was elevated more than 2-fold, while the receptor number was decreased by 31%. Isoproterenol, norepinephrine and sodium fluoride stimulated adenylate cyclase activity was significantly higher in the cholesterol-fed group although the fold stimulation over basal levels was not affected. The most prominent change in the cardiac membrane lipids was an increase in the cholesterol to phospholipid ratio in marmoset monkeys fed cholesterol. These results indicate that in the marmoset, membrane cholesterol is an important factor in determining various properties of the cardiac beta-adrenergic receptor particularly receptor affinity which may impact on the response of the beta-adrenergic receptor/adenylate cyclase system of the heart to catecholamines. This result is in agreement with dietary fatty acid supplements designed to increase cardiac membrane cholesterol in this animal species (McMurchie, E.J. et al. (1988) Biochim. Biophys. Acta 937, 347-358). Elevated membrane cholesterol enhances beta-adrenergic receptor affinity and certain aspects of adenylate cyclase activity. This is a likely mechanism whereby atherogenic diets could promote cardiac arrhythmia in non-human primates and indeed in man.  相似文献   

13.
Incubation of human astrocytoma cells (1321N1) with low concentrations of isoproterenol results in a specific loss of responsiveness to catecholamines as evidenced by a decreased accumulation of cAMP in intact cells, a reduction in isoproterenol-stimulated adenylate cyclase activity, and a decrease in beta-adrenergic receptor density, as measured by the specific binding of 125I-hydroxybenzylpindolol. The kinetics of desensitization suggest the involvement of two different reactions. The initial reaction involves a rapid loss of adenylate cyclase activity with little loss of beta-adrenergic receptors. Subsequently, a slower reaction results in the loss of measurable beta-adrenergic receptors. The degree of loss of both parameters was similar after 24 h of desensitization. It is concluded that the loss of beta-adrenergic receptors is an event that occurs as a result of the initial uncoupling of the beta-receptor-linked adenylate cyclase.  相似文献   

14.
Balb/3T3 murine fibroblasts transformed by transfection with the EJ/T24 human bladder carcinoma oncogene were assayed in terms of adenylate cyclase response and hydrolysis of polyphosphoinositides dependent on specific agents. Transformed cells were much less responsive to beta-adrenergic agonists in rising cAMP than normal cells. They are instead much more sensitive to muscarinic receptor agonists, inducing a rapid intracellular accumulation of inositol phosphates. These results suggest that the functional alteration of the cell membrane caused by the product of the point mutated H-ras oncogene concerns in 3T3 fibroblasts both inhibitory and stimulatory effects, respectively on adenylate cyclase and phosphoinositide-phosphodiesterase.  相似文献   

15.
In Dictyostelium discoideum cells the enzyme adenylate cyclase is functionally coupled to cell surface receptors for cAMP. Coupling is known to involve one or more G-proteins. Receptor-mediated activation of adenylate cyclase is subject to adaptation. In this study we employ an electropermeabilized cell system to investigate regulation of D. discoideum adenylate cyclase. Conditions for selective permeabilization of the plasma membrane have been described by C.D. Schoen, J. C. Arents, T. Bruin, and R. Van Driel (1989, Exp. Cell Res. 181, 51-62). Only small pores are created in the membrane, allowing exchange of exclusively low molecular weight substances like nucleotides, and preventing the loss of macromolecules. Under these conditions functional protein-protein interactions are likely to remain intact. Adenylate cyclase in permeabilized cells was activated by the cAMP receptor agonist 2'-deoxy cAMP and by the nonhydrolyzable GTP-analogue GTP gamma S, which activates G-proteins. The time course of the adenylate cyclase reaction in permeabilized cells was similar to that of intact cells. Maximal adenylate cyclase activity was observed if cAMP receptor agonist or GTP-analogue was added just before cell permeabilization. If these activators were added after permeabilization adenylate cyclase was stimulated in a suboptimal way. The sensitivity of adenylate cyclase activity for receptor occupation was found to decay more rapidly than that for G-protein activation. Importantly, the adenylate cyclase reaction in permeabilized cells was subject to an adaptation-like process that was characterized by a time course similar to adaptation in vivo. In vitro adaptation was not affected by cAMP receptor agonists or by G-protein activation. Evidently electropermeabilized cells constitute an excellent system for investigating the positive and negative regulation of D. discoideum adenylate cyclase.  相似文献   

16.
D L Garver  C Johnson  D R Kanter 《Life sciences》1982,31(18):1987-1992
Reduced cyclic AMP (cAMP) production has been found in platelets of schizophrenic patients. cAMP is generated physiologically as a result of a series of steps beginning with receptor activation by a ligand, progressing through activation of the enzyme protein, adenylate cyclase. The deficit of cAMP found in the schizophrenic population may occur at any one, or at multiple steps in this cascade. The present study attempts to discriminate whether impaired adenylate cyclase itself was responsible for the cAMP deficit or whether abnormalities in receptor events or linkage are present in schizophrenics. The production of cAMP following direct stimulation of adenylate cyclase by NaF was contrasted with receptor mediated activation of adenylate cyclase by prostaglandin E1 (PGE1) in disrupted platelet preparations from schizophrenics and normal controls. cAMP formation stimulated by NaF was not different in platelets of schizophrenics as compared to controls, however, platelets of schizophrenics showed reduced response to PGE1 stimulation. The authors interpret these findings as evidence for a membrane associated abnormality of either receptor or receptor-adenylate cyclase linkage in the schizophrenias.  相似文献   

17.
beta-Adrenergic receptors, the GTP-binding regulatory protein that stimulates adenylate cyclase (Gs), and adenylate cyclase were each purified and reconstituted into unilamellar vesicles composed of phosphatidylethanolamine and phosphatidylserine (3:2, w/w). The molar ratio of receptor:Gs:adenylate cyclase was estimated to be about 1:10:1. Adenylate cyclase activity in the vesicles was stimulated up to 2.6-fold by beta-adrenergic agonists. Stimulation was dependent on the presence of guanine nucleotide, displayed appropriate beta-adrenergic selectivity and stereoselectivity for agonists, and was blocked appropriately by beta-adrenergic antagonists. Therefore, while additional proteins may modulate adenylate cyclase activity in native membranes, these results show that these three proteins are sufficient for the expression of hormone-stimulated adenylate cyclase.  相似文献   

18.
To study regulation of the parathyroid hormone (PTH)-responsive adenylate cyclase of osteoblast-like cells by 1,25-dihydroxyvitamin D (1,25(OH)2D), cAMP levels and adenylate cyclase activity were assayed in the hormone-responsive ROS 17/2.8 rat osteosarcoma cell line. Treatment of cells with 1,25(OH)2D3: alone markedly attenuated the cAMP response to subsequent PTH; decreased adenylate cyclase stimulated by PTH; and completely antagonized the positive regulatory effects of cell treatment with glucocorticosteroid (GC) on these responses to PTH. Sterol receptor mediation was indicated by specificity for the 1,25(OH)2D metabolite and high sensitivity (half-maximal attenuation at 7 X 10(-11) M). The effects of 1,25(OH)2D and GC were primarily on the maximal activity of adenylate cyclase and not on sensitivity to Mg2+, guanine nucleotide, or PTH. GC augmentation of ROS 17/2.8 cell cAMP accumulation was also seen with another receptor agonist (beta-adrenergic), cholera toxin or forskolin; 1,25(OH)2D antagonized all these GC effects. Opposing effects of GC and 1,25(OH)2D were seen as well on activation of the guanine nucleotide-binding regulatory protein (Ns) by guanyl-5'-yl imidodiphosphate and F- and on activation of the catalyst (C) by Mn2+. In contrast, with the activators other than PTH, cell treatment with 1,25(OH)2D in the absence of GC produced only minor attenuation of cAMP accumulation and no effect on adenylate cyclase activities. The data suggest that GC acts strongly on or near the PTH receptor-Ns complex in ROS 17/2.8 and to a lesser degree on the Ns-C interaction. Direct GC enhancement of C could not be concluded because of the influence of Ns on forskolin action and present data that Mn2+ does not uncouple Ns from C in this system. A GC effect on membrane structure or composition, as seen in other cell types, could explain these changes in adenylate cyclase function without the need to postulate multiple mechanisms. The data dissociate two 1,25(OH)2D effects, direct attenuation of activation of Ns via the PTH receptor and interference with the as yet undefined mechanism(s) of GC augmentation. These may represent dissimilar pathways of 1,25(OH)2D action on osteoblasts.  相似文献   

19.
Intact human parathyroid hormone, hPTH [1-84], and the hPTH [1-34] fragment stimulated membrane-associated protein kinase C (PKC) activity in immortalized (but still differentiation-competent) murine BALB/MK-2 skin keratinocytes. Unexpectedly, the hormone and its fragment did not stimulate adenylate cyclase. The failure of PTH to stimulate adenylate cyclase activity was not due to the lack of a functioning receptor-cyclase coupling mechanism because the cells were stimulated to synthesize cyclic adenosine monophosphate (cyclic AMP) by the beta-adrenergic drug isoproterenol. Thus, skin keratinocytes seem to have an unconventional PTH receptor that is coupled to a PKC-activating mechanism but not to adenylate cyclase. These observations suggest that normal and neoplastic skin keratinocytes respond to the PTH-related peptide that they make and secrete.  相似文献   

20.
We previously reported that kappa opiates stimulated the release of human placental lactogen (hPL) from human placental cells. In this study, we investigated the role of adenylate cyclase as a potential cellular mediator of such an effect. Incubations with ethylketocyclazocine (EKC) led to a time- and dose-dependent inhibition of adenylate cyclase activity. The maximal inhibition was 45 +/- 5% of control value after 15 min exposure to 10(-7)M EKC. This inhibition was reversed by opiate antagonist naloxone and was specific to kappa opiate type. Preincubation of human trophoblastic cells with 0.1 microgram/ml Islet-Activating-Protein (IAP; also called pertussis toxin) did not modify basal adenylate cyclase activity but abolished the inhibition of adenylate cyclase activity by EKC, indicating that the effect of opiates on cAMP production was mediated by an IAP-sensitive GTP binding protein. Also, IAP stimulated basal hPL release; the control levels were 22.4 ng/ml and 46.5 ng/ml without and with IAP respectively. However, the EKC-stimulated hPL levels were unchanged by preincubation with IAP. This difference in cAMP and hPL response in IAP-treated cells suggested that the opiate receptors are not directly coupled to adenylate cyclase. This hypothesis was confirmed by 1) experiments on placental membranes showing that in absence of the cytoplasmic elements (membranes only), EKC had no effect on membrane adenylate cyclase and 2) experiments on placental cells showing that dibutyryl-cAMP (dbcAMP) stimulated hPL release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号