首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.  相似文献   

2.
The elastic moduli of human subchondral, trabecular, and cortical bone tissue from a proximal tibia were experimentally determined using three-point bending tests on a microstructural level. The mean modulus of subchondral specimens was 1.15 GPa, and those of trabecular and cortical specimens was 4.59 GPa and 5.44 GPa respectively. Significant differences were found in the modulus values between bone tissues, which may have mainly resulted from the differences in the microstructures of each bone tissue rather than in the mineral density. Furthermore, the size-dependency of the modulus was examined using eight different sizes of cortical specimens (heights h = 100-1000 microns). While the modulus values for relatively large specimens (h greater than 500 microns) remained fairly constant (approximately 15 GPa), the values decreased as the specimens became smaller. A significant correlation was found between the modulus and specimen size. The surface area to volume ratio proved to be a key variable to explain the size-dependency.  相似文献   

3.
A continuous wave technique is described for measuring the nine independent orthotropic elastic coefficients from a single cubic specimen. The side dimensions of this cubic specimen are on the order of 5 mm. Because of the small size of the specimen, the spatial resolution of material inhomogeneity using this technique is quite good. Although it is possible to apply this technique to any elastic material such as woods or metals, the elastic properties of human and canine cortical femora are presented here. The orthotropic elastic coefficients and the variation of these coefficients are presented as a function of anatomical position.  相似文献   

4.
The mechanical performance of cancellous bone is characterized using experiments which apply linear poroelasticity theory. It is hypothesized that the anisotropic organization of the solid and pore volumes of cancellous bone can be physically characterized separately (no deformable boundary interactive effects) within the same bone sample. Due to its spongy construction, the in vivo mechanical function of cancellous or trabecular bone is dependent upon fluid and solid materials which may interact in a hydraulic, convective fashion during functional loading. This project provides insight into the organization of the tissue, ie., the trabecular connectivity, by defining the separate nature of this biphasic performance. Previous fluid flow experiments [Kohles et al., 2001, Journal of Biomechanics, 34(11), pp. 1197-1202] describe the pore space via orthotropic permeability. Ultrasonic wave propagation through the trabecular network is used to describe the solid component via orthotropic elastic moduli and material stiffness coefficients. The linear poroelastic nature of the tissue is further described by relating transport (fluid flow) and elasticity (trabecular load transmission) during regression analysis. In addition, an empirical relationship between permeability and porosity is applied to the collected data. Mean parameters in the superior-inferior (SI) orientation of cubic samples (n=20) harvested from a single bovine distal femur were the largest (p<0.05) in comparison to medial-lateral (ML) and anterior-posterior (AP) orientations: Apparent elastic modulus (2,139 MPa), permeability (4.65x10(-10) m2), and material stiffness coefficient (13.6 GPa). A negative correlation between permeability as a predictor of structural elastic modulus supported a parametric relationship in the ML (R2=0.4793), AP (R2=0.3018), and SI (R2=0.6445) directions (p<0.05).  相似文献   

5.
Nanoindentation has recently gained attention as a characterization technique for mechanical properties of biological tissues, such as bone, on the sub-micron level. However, optimal methods to characterize viscoelastic properties of bones are yet to be established. This study aimed to compare the time-dependent viscoelastic properties of bone tissue obtained with different nanoindentation methods. Bovine cortical and trabecular bone samples (n=8) from the distal femur and proximal tibia were dehydrated, embedded and polished. The material properties determined using nanoindentation were hardness and reduced modulus, as well as time-dependent parameters based on creep, loading-rate, dissipated energy and semi-dynamic testing under load control. Each loading protocol was repeated 160 times and the reproducibility was assessed based on the coefficient of variation (CV). Additionally, three well-characterized polymers were tested and CV values were calculated for reference.The employed methods were able to characterize time-dependent viscoelastic properties of bone. However, their reproducibility varied highly (CV 9–40%). The creep constant increased with increasing dwell time. The reproducibility was best with a 30 s creep period (CV 18%). The dissipated energy was stable after three repeated load cycles, and the reproducibility improved with each cycle (CV 23%). The viscoelastic properties determined with semi-dynamic test increased with increase in frequency. These measurements were most reproducible at high frequencies (CV 9–10%). Our results indicate that several methods are feasible for the determination of viscoelastic properties of bone material. The high frequency semi-dynamic test showed the highest precision within the tested nanoindentation protocols.  相似文献   

6.
A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric measurements. The method uses high-resolution computer reconstructions of trabecular bone specimens as input for large-scale FE-analyses to determine all the 21 elastic coefficients in the overall stiffness matrix of the specimen, using a direct mechanics approach. An optimization procedure is then used to find the coordinate transformation that yields the best orthotropic representation of this matrix. The method is illustrated here relative to two trabecular bone specimens. The techniques developed here can be used to obtain a complete characterization of the mechanical properties of trabecular architecture. With the development of in vivo reconstruction techniques, even in vivo measurements will be possible.  相似文献   

7.
An alternative concept of the relationship between morphological and elastic properties of trabecular bone is presented and applied to human tissue from several anatomical locations using a digital approach. The three-dimensional morphology of trabecular bone was assessed with a microcomputed tomography system and the method of directed secants as well as the star volume procedure were used to compute mean intercept length (MIL) and average bone length (ABL) of 4 mm cubic specimens. Assuming isotropic elastic properties for the trabecular tissue, the general elastic tensors of the bone specimens were determined using the homogenization method and the closest orthotropic tensors were calculated with an optimization algorithm. The assumption of orthotropy for trabecular bone was found to improve with specimen size and hold within 6.1 percent for a 4 mm cube size. A strong global relationship (r2 = 0.95) was obtained between fabric and the orthotropic elastic tensor with a minimal set of five constants. Mean intercept length and average bone length provided an equivalent power of prediction. These results support the hypothesis that the elastic properties of human trabecular bone from an arbitrary anatomical location can be estimated from an approximation of the anisotropic morphology and a prior knowledge of tissue properties.  相似文献   

8.
The purpose of this study is to quantify the spatial distribution of acoustic velocities and elastic properties (elastic constants) on Human femoral cortical bone. Four cross sections (average thickness of 2.09+/-0.27 mm) have been cut transversally between 40% and 70% of the total length and between them parallelepiped samples in each quadrant have been cut. Ultrasonic technique in transmission with immersion focused transducers at 5 MHz and contact transducers 2.25 MHz were used on the cross sections and parallelepiped samples, respectively. The first technique allows relative spatial distribution of velocities to be obtained, meanwhile the second technique allows the direct assessment of elastic constants. For both techniques, bulk velocities were found to be lower at the posterior side with an increase along the length (from 40% to 70% total length) (p < 0.05). Densities and elastic constants show equivalent pattern of variation. These variations are mainly due the cortical porosity related to vascularisation environment. The spatial distribution of velocities exhibits significant radial variation from the endosteal to the periosteal region. This is in agreement with variation of the porosity at that location. Same range of velocities was obtained with both techniques. The range of longitudinal velocities values varies from 3548 to 3967 m/s and between 18.5 and 33.1 GPa for the bulk velocities and axial elastic constants, respectively. Our results are within the range with those found in the literature. However, it must be noted that the range of acoustic and elastic properties variation is concerning the same bone. So, our new results show the ability of the technique to quantify accurately local variation of acoustic and elastic properties (within the section and along the length) of human cortical bone. Furthermore, our immersion technique could be used to assess the spatial distribution of the elastic constants with the knowledge of spatial distribution of densities.  相似文献   

9.
10.
Determining accurate density-mechanical property relationships for trabecular bone is critical for correct characterization of this important structure-function relation. When testing any excised specimen of trabecular bone, an unavoidable experimental artifact originates from the sides of the specimen where peripheral trabeculae lose their vertical load-bearing capacity due to interruption of connectivity, a phenomenon denoted here as the 'side-artifact'. We sought in this study to quantify the magnitude of such side-artifact errors in modulus measurement and to do so as a function of the trabecular architecture and specimen size. Using parametric computational analysis of high-resolution micro-CT-based finite-element models of cores of elderly human vertebral trabecular bone, a specimen-specific correction factor for the side-artifact was quantified as the ratio of the side-artifact-free apparent modulus (Etrue) to the apparent modulus that would be measured in a typical experiment (Emeasured). We found that the width over which the peripheral trabeculae were mostly unloaded was between 0.19 and 0.58 mm. The side-artifact led to an underestimation error in Etrue of over 50% in some specimens, having a mean (+/-SD) of 27+/-11%. There was a trend for the correction factor to linearly increase as volume fraction decreased (p=0.001) and as mean trabecular separation increased (p<0.001). Further analysis indicated that the error increased substantially as specimen size decreased. Two methods used for correcting for the side-artifact were both successful in bringing Emeasured into statistical agreement with Etrue. These findings have important implications for the interpretation of almost all literature data on trabecular bone mechanical properties since they indicate that such properties need to be adjusted to eliminate the substantial effects of side-artifacts in order to provide more accurate estimates of in situ behavior.  相似文献   

11.
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans.  相似文献   

12.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

13.
We studied the elastic properties of bone to analyze its mechanical behavior. The basic principles of ultrasonic methods are now well established for varying isotropic media, particularly in the field of biomedical engineering. However, little progress has been made in its application to anisotropic materials. This is largely due to the complex nature of wave propagation in these media. In the present study, the theory of elastic waves is essential because it relates the elastic moduli of a material to the velocity of propagation of these waves along arbitrary directions in a solid. Transducers are generally placed in contact with the samples which are often cubes with parallel faces that are difficult to prepare. The ultrasonic method used here is original, a rough preparation of the bone is sufficient and the sample is rotated. Moreover, to analyze heterogeneity of the structure we measure velocities in different points on the sample. The aim of the present study was to determine in vitro the anisotropic elastic properties of cortical bones. For this purpose, our method allowed measurement of longitudinal and transverse velocities (C(L) and C(T)) in longitudinal (fiber direction) and the radial directions (orthogonal to the fiber direction) of compact bones. Young's modulus E and Poisson's ratio nu, were then deduced from the velocities measured considering the compact bone as transversely isotropic or orthotropic. The results are in line with those of other methods.  相似文献   

14.
Errors induced by off-axis measurement of the elastic properties of bone   总被引:1,自引:0,他引:1  
Misalignment between the axes of measurement and the material symmetry axes of bone causes error in anisotropic elastic property measurements. Measurements of Poisson's ratio were strongly affected by misalignment errors. The mean errors in the measured Young's moduli were 9.5 and 1.3 percent for cancellous and cortical bone, respectively, at a misalignment angle of 10 degrees. Mean errors of 1.1 and 5.0 percent in the measured shear moduli for cancellous and cortical bone, respectively, were found at a misalignment angle of 10 degrees. Although, cancellous bone tissue was assumed to have orthotropic elastic symmetry, the possibility of the greater symmetry of transverse isotropy was investigated. When the nine orthotropic elastic constants were forced to approximate the five transverse isotropic elastic constants, errors of over 60 percent were introduced. Therefore, it was concluded that cancellous bone is truly orthotropic and not transversely isotropic. A similar but less strong result for cortical bone tissue was obtained.  相似文献   

15.
In 1961, Evans and King documented the mechanical properties of trabecular bone from multiple locations in the proximal human femur. Since this time, many investigators have cataloged the distribution of trabecular bone material properties from multiple locations within the human skeleton to include femur, tibia, humerus, radius, vertebral bodies, and iliac crest. The results of these studies have revealed tremendous variations in material properties and anisotropy. These variations have been attributed to functional remodeling as dictated by Wolff's Law. Both linear and power functions have been found to explain the relationship between trabecular bone density and material properties. Recent studies have re-emphasized the need to accurately quantify trabecular bone architecture proposing several algorithms capable of determining the anisotropy, connectivity and morphology of the bone. These past studies, as well as continuing work, have significantly increased the accuracy of analytical and experimental models investigating bone, and bone/implant interfaces as well as enhanced our perspective towards understanding the factors which may influence bone formation or resorption.  相似文献   

16.
We compare theoretical predictions of the effective elastic moduli of cortical bone at both the meso- and macroscales. We consider the efficacy of three alternative approaches: the method of asymptotic homogenization, the Mori-Tanaka scheme and the Hashin-Rosen bounds. The methods concur for specific engineering moduli such as the axial Young's modulus but can vary for others. In a past study, the effect of porosity alone on mesoscopic properties of cortical bone was considered, taking the matrix to be isotropic. Here, we consider the additional influence of the transverse isotropy of the matrix. We make the point that micromechanical approaches can be used in two alternative ways to predict either the macroscopic (size of cortical bone sample) or mesoscopic (in between micro- and macroscales) effective moduli, depending upon the choice of representative volume element size. It is widely accepted that the mesoscale behaviour is an important aspect of the mechanical behaviour of bone but models incorporating its effect have started to appear only relatively recently. Before this only macroscopic behaviour was addressed. Comparisons are drawn with experimental data and simulations from the literature for macroscale predictions with particularly good agreement in the case of dry bone. Finally, we show how predictions of the effective mesoscopic elastic moduli can be made which retain dependence on the well-known porosity gradient across the thickness of cortical bone.  相似文献   

17.
High-resolution voxel-based finite element software, such as FEEBE developed at the NCBES, is widely used for studying trabecular bone at the micro-scale. A new approach to determine heterogeneous bone tissue material properties for computational models was proposed in this study. The specimen-specific range of tissue moduli across strut width was determined from nanoindentation testing. This range was mapped directly using linear interpolation to that specimen's micro-computed tomography (microCT) grey value range as input material properties for finite element analysis. The method was applied to cuboid trabecular bone samples taken from eight, 4-year-old (skeletally mature) ovine L5 vertebrae. Before undergoing experimental uniaxial compression tests, the samples were microCT scanned and 30 microm resolution finite element models were generated. The linear elastic finite element models were compressed to 1% strain. This material property assignment method for computational models accurately reproduced the experimentally determined apparent modulus and concentrations of stress at locations of failure.  相似文献   

18.
Confined compression experiments were carried out on cortico-cancellous bone taken from bovine femoral condyles to assess the effect of prior loading on the elastic confined modulus, E(c) of morsellised cortico-cancellous bone (MCB). Measurements were taken to find the values of E(c) for MCB subjected to cyclic loading resulting in axial stresses in the range of 0.5-3.0 N mm(2). Two values of E(c) were considered: E(ic), the instantaneous modulus, and E(dc), the delayed modulus allowing for stress relaxation effects. It was found that the values of E(c) increased with increasing maximum axial stress. It was also found that for each stress level the values of E(c) increased as the number of load cycles increased. The dependence of E(c) on the maximum axial stress and the number of load cycles is seen to explain the wide range of values for the apparent modulus of MCB found in previous studies. Tests examining the stress relaxation behaviour of MCB are also discussed. The results indicate that a minimum of 10 compaction episodes are required for MCB to achieve around 90% of its predicted maximum stiffness for a given compaction force.  相似文献   

19.
Osteomalacia has been noted following in vivo aluminum (Al) loading in the rat by some investigators but not by others. To determine whether the response of bone to Al differs as a function of the skeletal site examined, quantitative histology of cortical and trabecular bone was done in the tibiae from control (C, n = 10), Al-treated (AL, n = 9), nephrectomized control (NX-C, n = 7), and nephrectomized Al-treated (NX-AL, n = 8) rats given 2 mg/day of Al for 4 weeks. Bone Al content was determined by histochemical methods. In cortical bone, osteoid seam width, osteoid volume, and percent osteoid area were similar for all groups. In contrast, for trabecular bone, both forming surface (means +/- SD) (5.2 +/- 3.4 vs 1.8 +/- 1.1%, P less than 0.05) and osteoid volume (1.7 +/- 0.7 vs 1.0 +/- 0.4%, P less than 0.05) increased from control values in AL, although osteoid seam width did not differ. In NX-AL, trabecular forming surface (20.2 +/- 6.7 vs 6.2 +/- 2.4%, P less than 0.01), osteoid area (13.2 +/- 5.7 vs 3.5 +/- 0.8%, P less than 0.01), and osteoid width (18.7 +/- 5.7 vs 9.7 +/- 2.3 micron, P less than 0.01) all were greater than in NX-C. Deposits of Al were undetectable in C and NX-C, were minimal in cortical bone in AL and NX-AL, but were present at 40.5 +/- 11.5 and 71.1 +/ 6.5% of trabecular surfaces in AL and NX-AL, respectively. Osteoid area and osteoid surface each correlated with trabecular bone Al. Thus, (a) osteoid accumulates in trabecular, but not in cortical, bone after 4 weeks of Al loading; (b) the extent of osteoid accumulation correlates with the bone Al content; and (c) the histologic response to Al in cortical and trabecular bone is related to local differences in the uptake of Al into bone.  相似文献   

20.
Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from \(\mu \hbox {CT}\) scans of femoral heads and vertebral bodies. They were converted into \(\mu \hbox {FE}\) models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. “In situ” stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset–Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters \(\nu _{0}\) (Poisson’s ratio) \(E_{0}\) and \(\mu _{0}\) (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on \(\nu _{0}\). However, KUBCs- and PMUBCs-based \(E_{0}\) and \(\mu _{0}\), respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号