首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A requisite step in reovirus infection of the murine intestine is proteolysis of outer-capsid proteins to yield infectious subvirion particles (ISVPs). When converted to ISVPs by intestinal proteases, virions of reovirus strain type 3 Dearing (T3D) lose 90% of their original infectivity due to cleavage of viral attachment protein ς1. In an analysis of eight field isolate strains of type 3 reovirus, we identified one additional strain, type 3 clone 31 (T3C31), that loses infectivity and undergoes ς1 cleavage upon conversion of virions to ISVPs. We examined the ς1 deduced amino acid sequences of T3D and the eight field isolate strains for a correlation between sequence variability and ς1 cleavage. The ς1 proteins of T3D and T3C31 contain a threonine at amino acid position 249, whereas an isoleucine occurs at this position in the ς1 proteins of the remaining strains. Thr249 occupies the d position of a heptad repeat motif predicted to stabilize ς1 oligomers through α-helical coiled-coil interactions. This region of sequence comprises a portion of the fibrous tail domain of ς1 known as the neck. Substitution of Thr249 with isoleucine or leucine resulted in resistance to cleavage by trypsin, whereas replacement with asparagine did not affect cleavage susceptibility. These results demonstrate that amino acid position 249 is an independent determinant of T3D ς1 cleavage susceptibility and that an intact heptad repeat is required to confer cleavage resistance. We performed amino-terminal sequence analysis on the ς1 cleavage product released during trypsin treatment of T3D virions to generate ISVPs and found that trypsin cleaves ς1 after Arg245. Thus, the sequence polymorphism at position 249 controls cleavage at a nearby site in the neck region. The relevance of these results to reovirus infection in vivo was assessed by treating virions with the contents of a murine intestinal wash under conditions that result in generation of ISVPs. The pattern of ς1 cleavage susceptibility generated by using purified protease was reproduced in assays using the intestinal wash. These results provide a mechanistic explanation for ς1 cleavage during exposure of virions to intestinal proteases and may account for certain strain-dependent patterns of reovirus pathogenesis.  相似文献   

2.
3.
Kinetic analyses of infectivity loss during thermal inactivation of reovirus particles revealed substantial differences between virions and infectious subvirion particles (ISVPs), as well as between the ISVPs of reoviruses type 1 Lang (T1L) and type 3 Dearing (T3D). The difference in thermal inactivation of T1L and T3D ISVPs was attributed to the major surface protein mu1 by genetic analyses with reassortant viruses and recoated cores. Irreversible conformational changes in ISVP-bound mu1 were shown to accompany thermal inactivation. The thermal inactivation of ISVPs approximated first-order kinetics over a range of temperatures, permitting the use of Arrhenius plots to estimate activation enthalpies and entropies that account for the different behaviors of T1L and T3D. An effect similar to enthalpy-entropy compensation was additionally noted for the ISVPs of these two isolates. Kinetic analyses with other ISVP-like particles, including ISVPs of a previously reported thermostable mutant, provided further insights into the role of mu1 as a determinant of thermostability. Intact virions, which contain final sigma3 bound to mu1 as their major surface proteins, exhibited greater thermostability than ISVPs and underwent thermal inactivation with kinetics that deviated from first order, suggesting a role for final sigma3 in both these properties. The distinct inactivation behaviors of ISVPs are consistent with their role as an essential intermediate in reovirus entry.  相似文献   

4.
The mammalian reovirus sigma1 protein is responsible for viral attachment to host cells and hemagglutination properties of the virus. In the present study, sequence similarity between sigma1 and chicken-type lysozymes prompted us to investigate additional functions of the sigma1 protein. Expression in Pichia pastoris yeast cells showed that sigma1 can actually cleave lysozyme substrates, including complex sugars found in bacterial cell walls. Replacement by site-directed mutagenesis of acidic amino acid residues in sigma1 by their respective isosteric, uncharged, amino acid residues has allowed us to identify Glu36 and Asp54 as the catalytic pair involved in sigma1-mediated glycosidase activity. The enzyme appears inactive in virions but its activity is unmasked upon generation of infectious subviral particles (ISVPs) by partial proteolytic removal of the outer capsid proteins. Purified sigma1 protein and ISVPs can also hydrolyze mucins, heavily glycosylated glycoproteins that are a major component of the mucus layer overlaying the intestinal epithelium. Furthermore, reovirus infection of epithelial Madin Darby canine kidney cells was inhibited tenfold in cells expressing mucin at their apical surface, while this inhibition was overcome by ISVPs. Unmasking of sigma1 mucinolytic activity in the intestine, consecutive to proteolytic cleavage of virions to ISVPs, thus likely contributes to the known increase in infectivity of reovirus ISVPs compared to complete virions. This work presents the first evidence that some mammalian viruses have evolved mechanisms to facilitate their penetration through the protective barrier of the mucus layer in the intestinal tract.  相似文献   

5.
Reovirus outer-capsid proteins mu1, sigma3, and sigma1 are thought to be assembled onto nascent core-like particles within infected cells, leading to the production of progeny virions. Consistent with this model, we report the in vitro assembly of baculovirus-expressed mu1 and sigma3 onto purified cores that lack mu1, sigma3, and sigma1. The resulting particles (recoated cores, or r-cores) closely resembled native virions in protein composition (except for lacking cell attachment protein sigma1), buoyant density, and particle morphology by scanning cryoelectron microscopy. Transmission cryoelectron microscopy and image reconstruction of r-cores confirmed that they closely resembled virions in the structure of the outer capsid and revealed that assembly of mu1 and sigma3 onto cores had induced rearrangement of the pentameric lambda2 turrets into a conformation approximating that in virions. r-cores, like virions, underwent proteolytic conversion to particles resembling native ISVPs (infectious subvirion particles) in protein composition, particle morphology, and capacity to permeabilize membranes in vitro. r-cores were 250- to 500-fold more infectious than cores in murine L cells and, like virions but not ISVPs or cores, were inhibited from productively infecting these cells by the presence of either NH4Cl or E-64. The latter results suggest that r-cores and virions used similar routes of entry into L cells, including processing by lysosomal cysteine proteinases, even though the former particles lacked the sigma1 protein. To examine the utility of r-cores for genetic dissections of mu1 functions in reovirus entry, we generated r-cores containing a mutant form of mu1 that had been engineered to resist cleavage at the delta:phi junction during conversion to ISVP-like particles by chymotrypsin in vitro. Despite their deficit in delta:phi cleavage, these ISVP-like particles were fully competent to permeabilize membranes in vitro and to infect L cells in the presence of NH4Cl, providing new evidence that this cleavage is dispensable for productive infection.  相似文献   

6.
The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding domains.  相似文献   

7.
Mammalian reoviruses undergo acid-dependent proteolytic disassembly within endosomes, resulting in formation of infectious subvirion particles (ISVPs). ISVPs are obligate intermediates in reovirus disassembly that mediate viral penetration into the cytoplasm. The initial biochemical event in the reovirus disassembly pathway is the proteolysis of viral outer-capsid protein sigma 3. Mutant reoviruses selected during persistent infection of murine L929 cells (PI viruses) demonstrate enhanced kinetics of viral disassembly and resistance to inhibitors of endocytic acidification and proteolysis. To identify sequences in sigma 3 that modulate acid-dependent and protease-dependent steps in reovirus disassembly, the sigma 3 proteins of wild-type strain type 3 Dearing; PI viruses L/C, PI 2A1, and PI 3-1; and four novel mutant sigma 3 proteins were expressed in insect cells and used to recoat ISVPs. Treatment of recoated ISVPs (rISVPs) with either of the endocytic proteases cathepsin L or cathepsin D demonstrated that an isolated tyrosine-to-histidine mutation at amino acid 354 (Y354H) enhanced sigma 3 proteolysis during viral disassembly. Yields of rISVPs containing Y354H in sigma3 were substantially greater than those of rISVPs lacking this mutation after growth in cells treated with either acidification inhibitor ammonium chloride or cysteine protease inhibitor E64. Image reconstructions of electron micrographs of virus particles containing wild-type or mutant sigma 3 proteins revealed structural alterations in sigma 3 that correlate with the Y354H mutation. These results indicate that a single mutation in sigma 3 protein alters its susceptibility to proteolysis and provide a structural framework to understand mechanisms of sigma 3 cleavage during reovirus disassembly.  相似文献   

8.
Type 1 reoviruses invade the intestinal mucosa of mice by adhering selectively to M cells in the follicle-associated epithelium and then exploiting M cell transport activity. The purpose of this study was to identify the apical cell membrane component and viral protein that mediate the M cell adherence of these viruses. Virions and infectious subviral particles of reovirus type 1 Lang (T1L) adhered to rabbit M cells in Peyer's patch mucosal explants and to tissue sections in an overlay assay. Viral adherence was abolished by pretreatment of sections with periodate and in the presence of excess sialic acid or lectins MAL-I and MAL-II (which recognize complex oligosaccharides containing sialic acid linked alpha2-3 to galactose). The binding of T1L particles to polarized human intestinal (Caco-2(BBe)) cell monolayers was correlated with the presence of MAL-I and MAL-II binding sites, blocked by excess MAL-I and -II, and abolished by neuraminidase treatment. Other type 1 reovirus isolates exhibited MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells, but type 2 or type 3 isolates including type 3 Dearing (T3D) did not. In assays using T1L-T3D reassortants and recoated viral cores containing T1L, T3D, or no sigma1 protein, MAL-II-sensitive binding to rabbit M cells and polarized Caco-2(BBe) cells was consistently associated with the T1L sigma1. MAL-II-recognized oligosaccharide epitopes are not restricted to M cells in vivo, but MAL-II immobilized on virus-sized microparticles bound only to the follicle-associated epithelium and M cells. The results suggest that selective binding of type 1 reoviruses to M cells in vivo involves interaction of the type 1 sigma1 protein with glycoconjugates containing alpha2-3-linked sialic acid that are accessible to viral particles only on M cell apical surfaces.  相似文献   

9.
Entry of mammalian reovirus virions into target cells requires proteolytic processing of surface protein sigma3. In the virion, sigma3 mostly covers the membrane-penetration protein mu1, appearing to keep it in an inactive form and to prevent it from interacting with the cellular membrane until the proper time in infection. The molecular mechanism by which sigma3 maintains mu1 in this inactive state and the structural changes that accompany sigma3 processing and mu1 activation, however, are not well understood. In this study we characterized the early steps in sigma3 processing and determined their effects on mu1 function and particle infectivity. We identified two regions of high protease sensitivity, "hypersensitive" regions located at residues 208 to 214 and 238 to 244, within which all proteases tested selectively cleaved sigma3 as an early step in processing. Further processing of sigma3 was required for infection, consistent with the fact that the fragments resulting from these early cleavages remained bound to the particles. Reovirus type 1 Lang (T1L), type 3 Dearing (T3D), and T1L x T3D reassortant virions differed in the sites of early sigma3 cleavage, with T1L sigma3 being cleaved mainly at residues 238 to 244 and T3D sigma3 being cleaved mainly at residues 208 to 214. These virions also differed in the rates at which the early cleavages occurred, with cleavage of T1L sigma3 occurring faster than cleavage of T3D sigma3. Analyses using chimeric and site-directed mutants of recombinant sigma3 identified carboxy-proximal residues 344, 347, and 353 as the primary determinants of these strain differences. The spatial relationships between these more carboxy-proximal residues and the hypersensitive regions were discerned from the sigma3 crystal structure. The results indicate that proteolytic processing of sigma3 during reovirus disassembly is a multistep pathway with a number of molecular determinants.  相似文献   

10.
Reovirus adheres specifically to apical membranes of mouse intestinal M cells and exploits M-cell transepithelial transport activity to enter Peyer's patch mucosa, where replication occurs. Proteolytic conversion of native reovirus to intermediate subviral particles (ISVPs) occurs in the intestine, but it is not known whether conversion is essential for interaction of virus with M cells. We tested the capacity of native virions, ISVPs, and cores (that lack outer capsid proteins) to bind to intestinal epithelial cells in vivo and found that only ISVPs adhered to M cells. Thus, intraluminal conversion of native reovirus to ISVPs is a prerequisite for M-cell adherence, and outer capsid proteins unique to ISVPs (either sigma 1 or products of mu 1) mediate interaction of virus with M-cell apical membranes.  相似文献   

11.
In this study, we investigated the interaction of reovirus particles with cell membranes by using a 51Cr release assay. We confirmed prior observations (J. Borsa, B. D. Morash, M. D. Sargent, T. P. Copps, P. A. Lievaart, and J. G. Szekely, J. Gen. Virol. 45:161-170, 1979) that intermediate subviral particles (ISVPs) of reovirus type 3 strain Abney (T3A) induced the release of 51Cr from preloaded L cells and showed that the intact virion and core forms did not. Reovirus type 1 strain Lang (T1L) ISVPs were found to be less efficient at 51Cr release than T3A ISVPs. Reassortants between these strains indicated that the 51Cr release phenotype segregates with the M2 gene segment. Biochemical studies indicated that the ISVPs' acquisition of the capacity to induce 51Cr release followed the cleavage of the viral M2 gene product mu 1/mu 1C to fragments delta and phi during virion conversion to ISVP but did not directly correlate with this cleavage. These studies suggest that the reovirus M2 gene product (in its cleaved form) plays a role in interacting with cell membranes.  相似文献   

12.
13.
Reoviruses are important models for studies of viral pathogenesis; however, the mechanisms by which these viruses produce cytopathic effects in infected cells have not been defined. In this report, we show that murine L929 (L) cells infected with prototype reovirus strains type 1 Lang (TIL) and type 3 Dearing (T3D) undergo apoptosis and that T3D induces apoptosis to a substantially greater extent than T1L. Using T1L x T3D reassortant viruses, we found that differences in the capacity of T1L and T3D to induce apoptosis are determined by the viral S1 gene segment, which encodes the viral attachment protein sigma 1 and the non-virion-associated protein sigma 1s. Apoptosis was induced by UV-inactivated, replication-incompetent reovirus virions, which do not contain sigma 1s and do not mediate its synthesis in infected cells. Additionally, T3D-induced apoptosis was inhibited by anti-reovirus monoclonal antibodies that inhibit T3D cell attachment and disassembly. These results indicate that sigma 1, rather than sigma 1s, is required for induction of apoptosis by the reovirus and suggest that interaction of virions with cell surface receptors is an essential step in this mechanism of cell killing.  相似文献   

14.
Oral inoculation of suckling mice with reovirus serotype 1 (strain Lang) results in the conversion of intact virions to intermediate subviral particles (ISVPs) in the intestinal lumen. Digestion of virus in vitro with chymotrypsin or trypsin reveals two distinct forms of ISVPs, while the predominant species of ISVPs found in the small intestinal lumen appears to be identical to the chymotrypsin product. The in vivo conversion of virions to ISVPs was blocked by pretreatment of mice with protease inhibitors, resulting in inefficient replication of reovirus in intestinal tissue. The early inhibition of viral replication in suckling mice pretreated with protease inhibitors was not observed when suckling mice were inoculated with ISVPs generated by in vitro digestion with either chymotrypsin or trypsin. However, replication was decreased during secondary rounds of replication in mice receiving repeated doses of protease inhibitors, suggesting that luminal proteolytic digestion is important in rendering progeny virions infectious in the gut.  相似文献   

15.
Two approaches were used to demonstrate proteolysis of reovirus in the intestine of the neonatal mouse. The first approach utilized peroral inoculation of radiolabeled virus into neonatal mice; the intestinal washings were harvested at 0 to 30 min postinoculation. The virus recovered from the intestinal washings was electrophoresed in polyacrylamide to determine whether proteolytic digestion of viral proteins had occurred. Complete loss of sigma 3 and generation of the mu 1c cleavage product delta demonstrated that digestion occurred within 10 to 30 min after the inoculation, resulting in the rapid generation of intermediate subviral particles (ISVPs). The products formed resembled those seen when the virus is digested in vitro with chymotrypsin. The second approach took advantage of the fact that ISVPs grow in cells treated with NH4Cl, whereas intact virus does not grow under these conditions (L. J. Sturzenbecker, M. Nibert, D. Furlong, and B. N. Fields, J. Virol. 61:2351-2361, 1987). Thus, assaying virus for its ability to grow in NH4Cl-treated cells represents a means of ascertaining whether the samples contain ISVPs. Using this approach, we demonstrated that up to 8 h postinoculation ISVPs predominate in the intestinal tissue and in the intestinal lumen. Between 8 and 15 h postinoculation, there is a loss in the proportion of ISVPs in the tissue so that by 15 h postinoculation ISVPs are no longer detectable in intestinal tissue washed of lumen contents and virus. In contrast, the lumen of the intestine contains some ISVPs at all times postinoculation. Thus, after peroral inoculation, the mammalian reoviruses are converted to proteolytically cleaved virus, suggesting that proteolysis plays an important role in initiation of infection in the gastrointestinal tract.  相似文献   

16.
Reovirus virions are nonenveloped icosahedral particles consisting of two concentric protein shells, termed outer capsid and core. Outer-capsid protein sigma1 is the viral attachment protein and binds carbohydrate molecules on the surface of host cells. Monoclonal antibody (MAb) 4F2, which is specific for outer-capsid protein sigma3, blocks the binding of sigma1 protein to sialic acid and inhibits reovirus-induced hemagglutination (HA). To determine whether MAb 4F2 inhibits HA by altering sigma1-sigma3 interactions or by steric hindrance, we analyzed the effect of 4F2 immunoglobulin G (IgG) and Fab fragments (Fabs) on HA induced by reovirus strain type 3 Dearing (T3D). The concentration of 4F2 IgG sufficient to inhibit T3D-induced HA was 12.5 microg per ml, whereas that of Fabs was >200 microg per ml. Dynamic light scattering analysis showed that at the concentration of IgG sufficient to inhibit HA, virion-antibody complexes were monodispersed and not aggregated. The affinity of 4F2 Fabs for T3D virions was only threefold less than that of intact IgG, which suggests that differences in HA inhibition titer exhibited by 4F2 IgG and Fabs are not attributable to differences in the affinity of these molecules for T3D virions. We used cryoelectron microscopy and three-dimensional image analysis to visualize T3D virions alone and in complex with either IgG or Fabs of MAb 4F2. IgG and Fabs bind the same site at the distal portion of sigma3, and binding of IgG and Fabs induces identical conformational changes in outer-capsid proteins sigma3 and mu1. These results suggest that MAb 4F2 inhibits reovirus binding to sialic acid by steric hindrance and provide insight into the conformational flexibility of reovirus outer-capsid proteins.  相似文献   

17.
18.
Reovirus virions are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis leading to degradation of sigma3 protein and proteolytic cleavage of micro1/micro1C protein. E64 is a specific inhibitor of cysteine-containing proteases that blocks disassembly of reovirus virions. To identify domains in reovirus proteins that influence susceptibility to E64-mediated inhibition of disassembly, we selected variant viruses by serial passage of strain type 3 Dearing (T3D) in murine L929 cells treated with E64. E64-adapted variant viruses (D-EA viruses) produced 7- to 17-fold-greater yields than T3D did after infection of cells treated with 100 microM E64. Viral genes that segregate with growth of D-EA viruses in the presence of E64 were identified by using reassortant viruses isolated from independent crosses of E64-sensitive strain type 1 Lang and two prototype D-EA viruses. Growth of reassortant viruses in the presence of E64 segregated with the S4 gene, which encodes outer-capsid protein sigma3. Sequence analysis of S4 genes of three D-EA viruses isolated from independent passage series revealed a common tyrosine-to-histidine mutation at amino acid 354 in the deduced amino acid sequence of sigma3. Proteolysis of D-EA virions by endocytic protease cathepsin L occurred with faster kinetics than proteolysis of wild-type T3D virions. Treatment of D-EA virions, but not T3D virions, with cathepsin D resulted in proteolysis of sigma3, a property that also was found to segregate with the D-EA S4 gene. These results indicate that a region in sigma3 protein containing amino acid 354 influences susceptibility of sigma3 to proteolysis during reovirus disassembly.  相似文献   

19.
Mammalian reoviruses are internalized into cells by receptor-mediated endocytosis. Within the endocytic compartment, the viral outer capsid undergoes acid-dependent proteolysis resulting in removal of the sigma3 protein and proteolytic cleavage of the mu1/mu1C protein. Ammonium chloride (AC) is a weak base that blocks disassembly of reovirus virions by inhibiting acidification of intracellular vacuoles. To identify domains in reovirus proteins that influence pH-sensitive steps in viral disassembly, we adapted strain type 3 Dearing (T3D) to growth in murine L929 cells treated with AC. In comparison to wild-type (wt) T3D, AC-adapted (ACA-D) variant viruses exhibited increased yields in AC-treated cells. AC resistance of reassortant viruses generated from a cross of wt type 1 Lang and ACA-D variant ACA-D1 segregated with the sigma3-encoding S4 gene. The deduced sigma3 amino acid sequences of six independently derived ACA-D variants contain one or two mutations each, affecting a total of six residues. Four of these mutations, I180T, A246G, I347S, and Y354H, cluster in the virion-distal lobe of sigma3. Linkage of these mutations to AC resistance was confirmed in experiments using reovirus disassembly intermediates recoated with wt or mutant sigma3 proteins. In comparison to wt virions, ACA-D viruses displayed enhanced susceptibility to proteolysis by endocytic protease cathepsin L. Image reconstructions of cryoelectron micrographs of three ACA-D viruses that each contain a single mutation in the virion-distal lobe of sigma3 demonstrated native capsid protein organization and minimal alterations in sigma3 structure. These results suggest that mutations in sigma3 that confer resistance to inhibitors of vacuolar acidification identify a specific domain that regulates proteolytic disassembly.  相似文献   

20.
Penetration of a cell membrane as an early event in infection of cells by mammalian reoviruses appears to require a particular type of viral particle, the infectious subvirion particle (ISVP), which is generated from an intact virion by proteolytic cleavage of the outer capsid proteins sigma 3 and mu 1/mu 1C. Characterizations of the structural components and properties of ISVPs are thus relevant to attempts to understand the mechanism of penetration by reoviruses. In this study, a novel, approximately 13-kDa carboxy-terminal fragment (given the name phi) was found to be generated from protein mu 1/mu 1C during in vitro treatments of virions with trypsin or chymotrypsin to yield ISVPs. With trypsin treatment, both the carboxy-terminal fragment phi and the amino-terminal fragment mu 1 delta/delta were shown to be generated and to remain attached to ISVPs in stoichiometric quantities. Sites of protease cleavage were identified in the deduced amino acid sequence of mu 1 by determining the amino-terminal sequences of phi proteins: trypsin cleaves between arginine 584 and isoleucine 585, and chymotrypsin cleaves between tyrosine 581 and glycine 582. Findings in this study indicate that sequences in the phi portion of mu 1/mu 1C may participate in the unique functions attributed to ISVPs. Notably, the delta-phi cleavage junction was predicted to be flanked by a pair of long amphipathic alpha-helices. These amphipathic alpha-helices, together with the myristoyl group at the extreme amino terminus of mu 1/mu 1N, are proposed to interact directly with the lipid bilayer of a cell membrane during penetration by mammalian reoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号