首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A small catalytic DNA molecule targeting c-myc RNA was found to be a potent inhibitor of smooth muscle cell (SMC) proliferation. The catalytic domain of this molecule was based on that previously derived by in vitro selection (Santoro, S. W., and Joyce, G. F. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4262-4266) and is known as the "10-23" general purpose RNA-cleaving deoxyribozyme. In addition to inhibiting SMC proliferation at low concentration, this molecule (targeting the translation initiation region of c-myc RNA) was found to efficiently cleave its full-length substrate in vitro and down-regulate c-myc gene expression in smooth muscle cells. The serum nuclease stability of this molecule was enhanced without substantial loss of kinetic efficiency by inclusion of a 3'-3'-internucleotide inversion at the 3'-terminal. The extent of SMC suppression was found to be influenced by the length of the substrate binding arms. This correlated to some extent with catalytic activity in both the short substrate under multiple turnover conditions and the full-length substrate under single turnover conditions, with the 9 + 9 base arm molecule producing the greatest activity.  相似文献   

2.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

3.
Several new and unexpected insights into the metalloenzymology of ribozymes have been achieved in the past year. From a mechanistic point of view, the NMR and crystal structures of a small Pb(2+)-dependent ribozyme have been particularly revealing.  相似文献   

4.
The hairpin ribozyme is a small catalytic RNA with reversible phosphodiester cleavage activity. Biochemical and structural studies exclude a requirement for divalent metal cation cofactors and implicate one active site nucleobase in particular, G8, in the catalytic mechanism. Our previous work demonstrated that the cleavage activity that is lost when G8 is replaced by an abasic residue is restored when certain nucleobases are provided in solution. The specificity and pH dependence of exogenous nucleobase rescue were consistent with several models of the rescue mechanism, including general acid base catalysis, electrostatic stabilization of negative charge in the transition state or a requirement for protonation to facilitate exogenous nucleobase binding. Detailed analyses of exogenous nucleobase rescue for both cleavage and ligation reactions now allow us to refine models of the rescue mechanism. Activity increased with increasing pH for both unmodified ribozyme reactions and unrescued reactions of abasic variants lacking G8. This similarity in pH dependence argues against a role for G8 as a general base catalyst, because G8 deprotonation could not be responsible for the pH-dependent transition in the abasic variant. Exogenous nucleobase rescue of both cleavage and ligation activity increased with decreasing pH, arguing against a role for rescuing nucleobases in general acid catalysis, because a nucleobase that contributes general acid catalysis in the cleavage pathway should provide general base catalysis in ligation. Analysis of the concentration dependence of cytosine rescue at high and low pH demonstrated that protonation promotes catalysis within the nucleobase-bound ribozyme complex but does not stabilize nucleobase binding in the ground state. These results support an electrostatic stabilization mechanism in which exogenous nucleobase binding counters negative charge that develops in the transition state.  相似文献   

5.
Novel ribozymes produced by in vitro selection techniques provide insights into the possible mechanisms of protein synthesis evolution. The availability of such ribozymes also paves the way for experiments to explore the evolution of RNA–protein enzymes.  相似文献   

6.
Glucokinase (GCK, hexokinase IV) is a monomeric enzyme with a single glucose binding site that displays steady‐state kinetic cooperativity, a functional characteristic that affords allosteric regulation of GCK activity. Structural evidence suggests that connecting loop I, comprised of residues 47–71, facilitates cooperativity by dictating the rate and scope of motions between the large and small domains of GCK. Here we investigate the impact of varying the length and amino acid sequence of connecting loop I upon GCK cooperativity. We find that sequential, single amino acid deletions from the C‐terminus of connecting loop I cause systematic decreases in cooperativity. Deleting up to two loop residues leaves the kcat value unchanged; however, removing three or more residues reduces kcat by 1000‐fold. In contrast, the glucose K0.5 and KD values are unaffected by shortening the connecting loop by up to six residues. Substituting alanine or glycine for proline‐66, which adopts a cis conformation in some GCK crystal structures, does not alter cooperativity, indicating that cis/trans isomerization of this loop residue does not govern slow conformational reorganizations linked to hysteresis. Replacing connecting loop I with the corresponding loop sequence from the catalytic domain of the noncooperative isozyme human hexokinase I (HK‐I) eliminates cooperativity without impacting the kcat and glucose K0.5 values. Our results indicate that catalytic turnover requires a minimal length of connecting loop I, whereas the loop has little impact upon the binding affinity of GCK for glucose. We propose a model in which the primary structure of connecting loop I affects cooperativity by influencing conformational dynamics, without altering the equilibrium distribution of GCK conformations.  相似文献   

7.
Hammerhead ribozymes in crystals change conformation in response to deprotonation of the nucleophilic 2' OH, thereby aligning the hydroxyl for in-line displacement at the scissile phosphate. Published data do not address whether deprotonation affects folding in solution. Allosteric hammerhead "TRAPs," when activated by the appropriate oligonucleotide, show the expected log-linear relation between initial cleavage rate and pH. In contrast, attenuated TRAPs shows biphasic kinetics in which a rapid burst is followed by slow cleavage that is nearly independent of pH. Attenuated ribozymes are stimulated by urea at both low and high pH, confirming that rearrangement of secondary structure is rate-limiting for the attenuated ribozymes once they have folded. Plots of burst magnitude versus pH in the absence of urea show a sharp transition around pH 8.3, which is near the kinetic pKa for the cleavage reaction in Mg2+. Raising the pH after folding at pH 7.5 did not activate attenuated ribozymes even when the RNA was incubated at the elevated pH for extended periods prior to addition of Mg2+. In contrast, lowering the pH after folding at pH 9.5 rapidly re-established attenuation. Deprotonation of the ribozyme-substrate complex thus appears to alter the folding landscape such that a metastable "pre-activated" complex forms before the thermodynamically more stable attenuated state can be attained. From the initial partition into active and inactive conformers, we estimate that this deprotonation contributes approximately 1.2 kcal/mol toward stabilization of the active fold at a crucial step during folding of the TRAP. Assuming that the nucleophilic 2' OH is the relevant acid, its deprotonation would thus serve a dual role of favoring productive fold and enhancing the nucleophilicity of this oxygen.  相似文献   

8.
The RNA world hypothesis states that the early evolution of life went through a stage where RNA served as genome and as catalyst. The replication of RNA world organisms would have been facilitated by ribozymes that catalyze RNA polymerization. To recapitulate an RNA world in the laboratory, a series of RNA polymerase ribozymes was developed previously. However, these ribozymes have a polymerization efficiency that is too low for self-replication, and the most efficient ribozymes prefer one specific template sequence. The limiting factor for polymerization efficiency is the weak sequence-independent binding to its primer/template substrate. Most of the known polymerase ribozymes bind an RNA heptanucleotide to form the P2 duplex on the ribozyme. By modifying this heptanucleotide, we were able to significantly increase polymerization efficiency. Truncations at the 3'-terminus of this heptanucleotide increased full-length primer extension by 10-fold, on a specific template sequence. In contrast, polymerization on several different template sequences was improved dramatically by replacing the RNA heptanucleotide with DNA oligomers containing randomized sequences of 15 nt. The presence of G and T in the random sequences was sufficient for this effect, with an optimal composition of 60% G and 40% T. Our results indicate that these DNA sequences function by establishing many weak and nonspecific base-pairing interactions to the single-stranded portion of the template. Such low-specificity interactions could have had important functions in an RNA world.  相似文献   

9.
Since direct analysis of many aspects of spliceosomal function is greatly hindered by the daunting complexity of the spliceosome, the development of functionally validated simple model systems can be of great value. The critical role played by a base-paired complex of U6 and U2 snRNAs in splicing in vivo suggests that this complex could be a suitable starting point for the development of such a simple model system. However, several criteria must be satisfied before such a snRNA-based in vitro system can be considered a valid model for the spliceosomal catalytic core, including similarities at the level of reaction chemistry and cationic and sequence requirements. Previous functional analyses of in vitro assembled base-paired complexes of human U2 and U6 snRNAs have been promising, providing insight into catalysis. Furthermore, they strongly suggest that with further optimization, these RNAs might indeed be able to recapitulate the function of the spliceosomal catalytic core, thus opening the door to several lines of study not previously possible.  相似文献   

10.
11.
Understanding allostery in the Mycobacterium tuberculosis low molecular weight protein tyrosine phosphatase (MptpA) is a subject of great interest since MptpA is one of two protein tyrosine phosphatases (PTPs) from the pathogenic organism Mycobacterium tuberculosis expressed during host cell infection. Here, we combine computational modeling with solution NMR spectroscopy and we find that Q75 is an allosteric site. Removal of the polar side chain of Q75 by mutation to leucine results in a cascade of events that reposition the acid loop over the active site and relocates the catalytic aspartic acid (D126) at an optimal position for proton donation to the leaving aryl group of the substrate and for subsequent hydrolysis of the thiophosphoryl intermediate. The computational analysis is consistent with kinetic data, and NMR spectroscopy, showing that the Q75L mutant exhibits enhanced reaction kinetics with similar substrate binding affinity. We anticipate that our findings will motivate further studies on the possibility that MptpA remains passivated during the chronic state of infection and increases its activity as part of the pathogenic life cycle of M. tuberculosis possibly via allosteric means.  相似文献   

12.
Human platelet-type 12-lipoxygenase (12-LOX) and its metabolites play a crucial role in tumor angiogenesis. A "10-23" deoxyribozyme (DNAzyme) and its phosphorothioate-modified version were designed and synthesized against the 12-LOX mRNA. Both DNAzymes were able to cleave their substrate efficiently in a time- and concentration-dependent manner in vitro. Under a multiple turnover condition, both performed well at 37 degrees C, showing the k(cat) of 1 and 0.26 min(-1), respectively. The phosphorothioate modification of the DNAzyme significantly increased its stability in cells without a substantial loss of kinetic efficiency in vitro. In a cell culture system, transfection of the DNAzymes into HEL cells resulted in a significant down-regulation of the 12-LOX mRNA. Furthermore, the cell extracts from the DNAzyme-transfected cells exhibited a marked reduction in the 12-LOX enzyme activity. The present results indicated the potential use of DNAzyme technology for gene function study and cancer therapy.  相似文献   

13.
All models of the RNA world era invoke the presence of ribozymes that can catalyse RNA polymerization. The class I ligase ribozyme selected in vitro 15 years ago from a pool of random RNA sequences catalyses formation of a 3',5'-phosphodiester linkage analogous to a single step of RNA polymerization. Recently, the three-dimensional structure of the ligase was solved in complex with U1A RNA-binding protein and independently in complex with an antibody fragment. The RNA adopts a tripod arrangement and appears to use a two-metal ion mechanism similar to protein polymerases. Here, we discuss structural implications for engineering a true polymerase ribozyme and describe the use of the antibody framework both as a portable chaperone for crystallization of other RNAs and as a platform for exploring steps in evolution from the RNA world to the RNA-protein world.  相似文献   

14.
Nam K  Gao J  York DM 《RNA (New York, N.Y.)》2008,14(8):1501-1507
Molecular dynamics simulations using a combined quantum mechanical/molecular mechanical potential are used to determine the two-dimensional free energy profiles for the mechanism of RNA transphosphorylation in solution and catalyzed by the hairpin ribozyme. A mechanism is explored whereby the reaction proceeds without explicit chemical participation by conserved nucleobases in the active site. The ribozyme lowers the overall free energy barrier by up to 16 kcal/mol, accounting for the majority of the observed rate enhancement. The barrier reduction in this mechanism is achieved mainly by the electrostatic environment provided by the ribozyme without recruitment of active site nucleobases as acid or base catalysts. The results establish a baseline mechanism that invokes only the solvation and specific hydrogen-bonding interactions present in the ribozyme active site and provide a departure point for the exploration of alternate mechanisms where nucleobases play an active chemical role.  相似文献   

15.
Most tRNAs carry a G at their 5' termini, i.e. at position +1. This position corresponds to the position immediately downstream of the site of cleavage in tRNA precursors. Here we studied RNase P RNA-mediated cleavage of substrates carrying substitutions/modifications at position +1 in the absence of the RNase P protein, C5, to investigate the role of G at the RNase P cleavage site. We present data suggesting that the exocyclic amine (2NH2) of G+1 contributes to cleavage site recognition, ground state binding and catalysis by affecting the rate of cleavage. This is in contrast to O6, N7 and 2'OH that are suggested to affect ground state binding and rate of cleavage to significantly lesser extent. We also provide evidence that the effects caused by the absence of 2NH2 at position +1 influenced the charge distribution and conceivably Mg2+ binding at the RNase P cleavage site. These findings are consistent with models where the 2NH2 at the cleavage site (when present) interacts with RNase P RNA and/or influences the positioning of Mg2+ in the vicinity of the cleavage site. Moreover, our data suggest that the presence of the base at +1 is not essential for cleavage but its presence suppresses miscleavage and dramatically increases the rate of cleavage. Together our findings provide reasons why most tRNAs carry a guanosine at their 5' end.  相似文献   

16.
The existence of an “RNA world” as an early step in the history of life increases the interest for the characterization of these biomolecules. The hairpin ribozyme studied here is a self‐cleaving/ligating motif found in the minus strand of the satellite RNA associated with Tobacco ringspot virus. Surface‐enhanced Raman spectroscopy (SERS) is a powerful tool to study trace amounts of RNA. In controlled conditions, a SERS signal is proportional to the amount of free residues adsorbed on the metal surface. On RNA cleavage, residues are unpaired and free to interact with metal. SERS procedures are used to monitor and quantify the catalysis of ribozyme cleavage at biological concentrations in real time; thus, they propose an interesting alternative to electrophoretic methods. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 384–390, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
Since the introduction of the concepts of allostery about four decades ago, much advancement has been made in elucidating the structure-function correlation in allostery. However, there are still a number of issues that remain unresolved. In this review we used mammalian pyruvate kinase (PK) as a model system to understand the role of protein dynamics in modulating cooperativity. PK has a triosephosphate isomerase (TIM)(α/β)8 barrel structural motif. PK is an ideal system to address basic questions regarding regulatory mechanisms about this common (α/β)8 structural motif. The simplest model accounting for all of the solution thermodynamic and kinetic data on ligand-enzyme interactions involves two conformational states, inactive ET and active ER. These conformational states are represented by domain movements. Further studies provide the first evidence for a differential effect of ligand binding on the dynamics of the structural elements, not major secondary structural changes. These data are consistent with our model that allosteric regulation of PK is the consequence of perturbation of the distribution of an ensemble of states in which the inactive ET and active ER represent the two extreme end states. Sequence differences and ligands can modulate the distribution of states leading to alterations of functions. The future work includes: defining the network of functionally connected residues; elucidating the chemical principles governing the sequence differences which affect functions; and probing the nature of mutations on the stability of the secondary structural elements, which in turn modulate allostery.  相似文献   

18.
根据锤头核酶模型,设计合成了一个以黄瓜花叶病毒(CMV) 外壳蛋白(CP) 亚基因组RNA 为底物的锤头型核酶(RZC) 。在证明它能有效切割该底物后,再将这个核酶与一个能专一性切割烟草花叶病毒(TMV) 移动蛋白( MP) 亚基因组RNA 的锤头型核酶(RZ1) 相互串联构成了一个双价核酶(RZ1C) 。体外结果表明,这个双价核酶能与相应的单价核酶RZ1 和RZC 一样专一而有效地切割CMVCP和TMV MPRNA。  相似文献   

19.
Experimental observations of enzymes under active turnover conditions have brought new insight into the role of protein motions and allosteric networks in catalysis. Many of these studies characterize enzymes under dynamic chemical equilibrium conditions, in which the enzyme is actively catalyzing both the forward and reverse reactions during data acquisition. We have previously analyzed conformational dynamics and allosteric networks of the alpha subunit of tryptophan synthase under such conditions using NMR. We have proposed that this working state represents a four to one ratio of the enzyme bound with the indole‐3‐glycerol phosphate substrate (E:IGP) to the enzyme bound with the products indole and glyceraldehyde‐3‐phosphate (E:indole:G3P). Here, we analyze the inactive D60N variant to deconvolute the contributions of the substrate‐ and products‐bound states to the working state. While the D60N substitution itself induces small structural and dynamic changes, the D60N E:IGP and E:indole:G3P states cannot entirely account for the conformational dynamics and allosteric networks present in the working state. The act of chemical bond breakage and/or formation, or possibly the generation of an intermediate, may alter the structure and dynamics present in the working state. As the enzyme transitions from the substrate‐bound to the products‐bound state, millisecond conformational exchange processes are quenched and new allosteric connections are made between the alpha active site and the surface which interfaces with the beta subunit. The structural ordering of the enzyme and these new allosteric connections may be important in coordinating the channeling of the indole product into the beta subunit.  相似文献   

20.
The concept of allosteric regulation has already been exploited in the creation of artificial ribozymes and the activities of certain ribozymes can be controlled allosterically by specific effectors. Ribozymes with such properties are in the spotlight as biosensors. Such artificial allosterically regulated ribozymes have potential utility as nucleic-acid-based biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号