首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

3.
《The Journal of cell biology》1985,101(5):1643-1650
We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.  相似文献   

4.
5.
Myosin isoforms and their light and heavy chains subunits were studied in the white lateral muscle of the eel during the post metamorphic development, in relation with the myosin ATPase profile. At elver stage VI A1 the myosin isoforms pattern was characterized by at least two isoforms, FM3 and FM2. The fast isomyosin type 1 (FM1) appeared during subsequent development. It increased progressively in correlation with the increase in the level of the light chain LC3f. FM1 became predominant at stage VI A4. At the elver stage VI A1, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed at least two heavy chains, namely type II-1 and II-2. The type II-1 heavy chain disappeared in the yellow eel white muscle, and V8-protease peptide map showed the appearance of a minor heavy chain type II-3 as early as stage VI B. Comparison of myosin heavy chains and myosin isoforms patterns showed the comigration of different myosin isoforms during white muscle development. The myosin ATPase profile was characterized by a uniform pattern as far as stage VI A4. A mosaic aspect in white muscle was observed as early as stage VI B, showing the appearance of small acid labile fibers. This observation suggests that the type II-3 heavy chain is specific to the small fibers.  相似文献   

6.
The myosin heavy chain composition of muscle fibers that comprise the red strip of the pectoralis major was determined at different stages of development and following adult denervation. Using a library of characterized monoclonal antibodies we found that slow fibers of the red strip do not react with antibodies to any of the fast myosin heavy chains of the superficial pectoralis. Immunocytochemical analysis of the fast fibers of the adult red strip revealed that they contain the embryonic fast myosin heavy chain rather than the adult pectoral isoform found throughout the adult white pectoralis. This was confirmed using immunoblot analysis of myosin heavy chain peptide maps. We show that during development of the red strip both neonatal and adult myosin heavy chains appear transiently, but then disappear during maturation. Furthermore, while the fibers of the superficial pectoralis reexpress the neonatal isoform as a result of denervation, the fibers of the red strip reexpress the adult isoform. Our data demonstrate a new developmental program of fast myosin heavy chain expression in the chicken and suggest that the heterogeneity of myosin heavy chain expression in adult fast fibers results from repression of specific isoforms by innervation.  相似文献   

7.
Myosin-heavy-chain-specific cDNA clones have been isolated from a cDNA library prepared from hind leg muscle of a 14-day-old rabbit. According to restriction enzyme analysis these can be grouped into at least two, probably three different classes. RNA dot-blot hybridization shows that all of these clones correspond to mRNAs expressed in fast skeletal muscle. The clones of the most abundant form, class I, can be aligned to cover the complete light meromyosin portion of myosin heavy chain. The sequence of the coding and the 3'-untranslated region, together comprising 2143 base pairs, has been determined. The class I clone detects a multigene family of 8-12 members on a Southern blot of rabbit genomic DNA.  相似文献   

8.
Three myosin heavy chain isoforms with unique peptide maps appear sequentially in the development of the chicken pectoralis major muscle. An embryonic isoform is expressed early and throughout development in the embryo. A second isoform appears just after hatching and predominates by 10 days ex ovo. A third isoform, indistinguishable from adult myosin heavy chain, predominates by 8 weeks after hatching. This sequence of myosin isoform change does not, however, appear during myogenesis in vitro. In cultures prepared from embryonic myoblasts only embryonic myosin heavy chain is expressed. This is true even in cultures maintained for 30 days. Myosin light chain expression also changes in vivo with a progressive increase in fast light chain 3 accumulation. In vitro, however, this shift to increasing fast light chain 3 accumulation does not occur. The results indicate that the myosin heavy chain and light chain pattern observed in vitro is identical to that of the embryonic muscle and that the conditions necessary for the shift in expression to a more mature myosin phenotype are not present in myogenic cultures. These cultures are therefore potentially of great value in probing further the neural and humoral determinants of muscle fiber maturation and growth.  相似文献   

9.
A human myosin heavy-chain gene, cloned in gamma Charon 4A phage (and as a clone designated lambda gMHC-1), was shown to code for a cardiac myosin heavy chain of the beta-type. The 5' end of the 14,200-base-pair genomic DNA clone is located in the head region of the myosin chain. The 3' end was shown to extent to the COOH terminus and includes the 3'-nontranslated sequence of the corresponding mRNA. The identification of lambda gMHC-1 as coding for a cardiac beta-myosin heavy chain was achieved by heteroduplex mapping using genomic cardiac myosin heavy-chain DNA of rabbit as a probe and, furthermore, by DNA sequence analysis of three selected subregions of the clones DNA including the 3'-nontranslated sequence. It was demonstrated by the S1 nuclease protection technique that the beta-myosin heavy-chain gene is transcribed in human heart muscle. In addition, we have found by the same technique that it is also expressed in human skeletal muscle.  相似文献   

10.
A full length (25,000 base-pair) myosin heavy chain gene completely contained within a single cosmid clone was isolated from a Syrian hamster cosmid genomic library. Sequence comparison of the 3' untranslated region indicated the presence of a 75% homology with the rat embryonic myosin heavy chain gene. Extensive 5' flanking region regulatory element conservation was also found when the sequence was compared to the rat myosin heavy chain gene. S1 nuclease digestion analysis, however, indicated that the Syrian hamster myosin heavy chain gene exhibited expression in adult Syrian hamster ventricular tissue, as well as the adult vastus medialis, a fast twitch skeletal muscle. Expression also appears to be enhanced in myopathic relative to control hearts. This myosin heavy chain gene is neither the alpha nor beta cardiac myosin heavy chain gene, but is a unique, previously unrecognized, myosin heavy chain gene present in both myocardial and skeletal muscle tissues.  相似文献   

11.
Immunochemical studies have identified a distinct myosin heavy chain (MHC) in the chicken embryonic skeletal muscle that was undetectable in this muscle in the posthatch period by both immunocytochemical and the immunoblotting procedures. This embryonic isoform, identified by antibody 96J, which also recognises the cardiac and SM1 myosin heavy chains, differs from the embryonic myosin heavy chain belonging to the fast class described previously. Although the fast embryonic isoform is a major species present in the leg and pectoral embryonic muscles, slow embryonic isoform was present in significant amounts during early embryonic development. Immunocytochemical studies using another monoclonal antibody designated 9812, which is specific for SM1 MHC, showed this isoform to be restricted to only presumptive slow muscle cells. From these studies and those reported on the changes in SM2 MHC, it is proposed that as is the case for the fast class, there also exists a slow class of myosin heavy chains composed of slow embryonic, SM1 and SM2 isoforms. The differentiation of a muscle cell involves transitions in a series of myosin isozymes in both presumptive fast and slow skeletal muscle cells.  相似文献   

12.
The expression of myosin isoforms and their subunit composition in the white skeletal body musculature of Arctic charr (Salvelinus alpinus) of different ages (from 77-day embryos until about 5 years old) was studied at the protein level by means of electrophoretic techniques. Myosin from the white muscle displayed three types of light chain during all the developmental stages examined: two myosin light chains type 1 (LC1F) differing in both apparent molecular mass and pI, one myosin light chain type 2 (LC2F) and one myosin light chain type 3 (LC3F). The fastest-migrating form of LC1F seemed to be predominant during the embryonic and eleutheroembryonic periods. The slowest-migrating form of LC1F was predominant in the 5-year-old fish. Between 1 year and 4 years, both types of LC1F were present in similar amounts. Cardiac as well as red muscle myosin from 3-year-old fish had two types of light chain. The myosin light chains from atria and ventriculi were indistinguishable by two-dimensional electrophoresis, but were different from the myosin light chains from red muscle. Neither the light chains from cardiac nor red muscle were coexpressed with the myosin light chains of white muscle at any of the developmental stages examined. Two myosin heavy chain bands were resolved by SDS/glycerol/polyacrylamide gel electrophoresis of the extract from embryos. One of the bands was present in minor amounts. The other, and most abundant, band comigrated with the only band found in the extracts of white muscle myosin from older fish. One-dimensional Staphylococcus aureus V8 protease peptide mapping of these bands revealed some differences during development of the white muscle tentatively interpreted as follows. The myosin heavy chain band present in minor amounts in the embryos may represent an early embryonic form that is replaced by a late embryonic or foetal form in the eleutheroembryos. The foetal myosin heavy chain appears to be present until the resorption of the yolk sack and beginning of the free-swimming stage. A new form of myosin heavy chain, termed neonatal and probably expressed around hatching, is present until about 1 year of age.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
We have isolated and characterized two distinct myosin heavy chain cDNA clones from a neonatal rat aorta cDNA library. These clones encode part of the light meromyosin region and the carboxyl terminus of smooth muscle myosin heavy chain. The two rat aorta cDNA clones were identical in their 5' coding sequence but diverged at the 3' coding and in a portion of the 3' untranslated regions. One cDNA clone, RAMHC21, encoded 43 unique amino acids from the point of divergence of the two cDNAs. The second cDNA clone, RAMHC 15, encoded a shorter carboxyl terminus of nine unique amino acids and was the result of a 39 nucleotide insertion. This extra nucleotide sequence was not present in RAMHC21. The rest of the 3' untranslated sequences were common to both cDNA clones. Genomic cloning and DNA sequence analysis demonstrated that an exon specifying the 39 nucleotides unique to RAMHC15 mRNA was present, together with the 5' upstream common exons in the same contiguous stretch of genomic DNA. The 39 nucleotide exon is flanked on either side by two relatively large introns of approximately 2600 and 2700 bases in size. RNase protection analysis indicated that the two corresponding mRNAs were coexpressed in both vascular and non-vascular smooth muscle tissues. This is the first demonstration of alternative RNA processing in a vertebrate myosin heavy chain gene and provides a novel mechanism for generating myosin heavy chain protein diversity in smooth muscle tissues.  相似文献   

14.
A genomic bank has been constructed using DNA isolated from a dystrophic strain of chickens. The library was screened for myosin heavy chain (MHC) sequences using a cDNA probe and 11 positive recombinants isolated. Identity of the clones was confirmed by positive RNA selection via hybridization of the clones with muscle RNA and subsequent translation of the hybridizable RNA in vitro. Restriction maps indicate that the clones can be divided into 7 distinct groups; some of these groups do, however, share similar or homologous sequences. Hydridization of the clones to RNA derived from leg, breast, heart, and brain reveals that all of the clones code for the muscle-specific MHC isoforms. These experiments also show that there are at least 3 size classes of MHC mRNA sequences, whose relative amounts appear to be modulated in a tissue- and developmental stage-specific manner.  相似文献   

15.
Analysis of acetylcholine receptor clones isolated from a human leg muscle cDNA library, revealed that the alpha-subunit existed as two isoforms. A novel exon, coding for 25 amino acids, was located in the human genomic DNA sequence; its insertion into the alpha-subunit gives the new isoform of 462 amino acids. In addition, mRNAs for the two isoforms were found in equal proportions in poly(A)+ RNA obtained from three further sources including partially denervated and innervated human muscle and the rhabdomyosarcoma cell line TE671. Both protein isoforms can be expressed in E. coli. No evidence of a sequence related to that of the new exon was found in cDNA derived from poly(A)+ RNA isolated from fetal calf or embryonic chick muscle or Torpedo marmorata electric organ.  相似文献   

16.
In this study, using a high-resolution gel electrophoresis technique, we have characterized the myosin heavy chain composition in different skeletal muscle of the mouse during postnatal development. The pattern of myosin heavy chain expression was studied in four hind limb muscles, the diaphragm, the tongue and the masseter. All of these muscles displayed the usual sequential transitions from embryonic to neonatal and to adult myosin heavy chain isoforms but more interestingly these transitions occur with a distinct chronology in the different muscles. In addition, our results demonstrated a transitory pattern of expression for certain adult myosin heavy chain isoforms in the soleus and the tongue. In the soleus muscle IIB and in the tongue IIA myosin heavy chain isoforms were detected only for a short time during postnatal life. Our results demonstrate that muscles of the mouse with different functions are subjected to a distinct programs of myosin isoform transitions during postnatal muscle development. This study describes new data which will help us to understand both postnatal muscle development in transgenic mouse muscles as well as in muscle pathology.  相似文献   

17.
A 3.6 kilobase cDNA clone coding for the human embryonic myosin heavy chain has been isolated and characterized from an expression library prepared from human fetal skeletal muscle. The derived amino acid sequence for the entire rod part of myosin shows 97% sequence homology between human and rat and a striking interspecies sequence conservation among the charged amino acid residues. The single copy gene is localized to human chromosome 17 and its expression in fetal skeletal muscle is developmentally regulated. The sequence information permits the design of isoform-specific probes for studies on the structure of the gene and its role in normal and defective human myogenesis.  相似文献   

18.
19.
We have raised monoclonal antibodies (Mabs) to myosin heavy chain isoforms (MHCs) that have specific patterns of temporal expression during the development of quail pectoral muscle and that are expressed in very restricted, tissue-specific patterns in adult birds. We find that an early embryonic, a perinatal, and an adult-specific, fast myosin heavy chain are co-expressed at different levels in the pectoral muscle of 8-12 day quail embryos. The early embryonic MHC disappears from the pectoral muscle at approximately 14 days in ovo, whereas the perinatal MHC persists until 26 days post-hatching. The adult-specific MHC accumulates preferentially and eventually completely replaces the other isoforms. These Mabs cross-react with the homologous isoforms of the chick and detect a similar pattern of MHC expression in the pectoral muscle of developing chicks. Although the early embryonic and perinatal MHC isoforms recognized by our Mabs are expressed in the pectoral muscle only during distinct developmental stages, our Mabs also recognize MHC isoforms present in the heart and extraocular muscle of adult quail. Immunofingerprinting using Staphylococcus aureus protease V8 suggests that the early embryonic and perinatal MHC isoforms that we see are strongly homologous with the adult ventricular and extraocular muscle isoforms, respectively. These observations suggest that at least three distinct MHC isoforms, which are normally expressed in adult muscles, are co-expressed during the early development of the pectoral muscle in birds. In this respect, the pattern of expression of the MHCs recognized by our Mabs in developing, fast muscle is very similar to the patterns described for other muscle contractile proteins.  相似文献   

20.
Monoclonal antibodies were prepared to stage-specific chicken pectoral muscle myosin heavy chain isoforms. From comparison of serial sections reacted with these antibodies, the myosin heavy chain isoform composition of individual myofibers was determined in denervated pectoral muscle and in regenerating myotubes that developed following cold injury of normal and denervated muscle. It was found that the neonatal myosin heavy chain reappeared in most myofibers following denervation of the pectoral muscle. Regenerating myotubes in both innervated and denervated muscle expressed all of the myosin heavy chain isoforms which have thus far been characterized in developing pectoral muscle. However, the neonatal and adult myosin heavy chains appeared more rapidly in regenerating myotubes compared to myofibers in developing muscle. While the initial expression of these isoforms in the regenerating areas was similar in innervated and denervated muscles, the neonatal myosin heavy chain did not disappear from noninnervated regenerating fibers. These results indicate that innervation is not required for the appearance of fast myosin heavy chain isoforms, but that the nerve plays some role in the repression of the neonatal myosin heavy chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号