首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Fully grown G2-arrested Xenopus oocytes resume meiosis in vitro upon exposure to hormonal stimulation. Progesterone triggers oocyte meiosis resumption through a Ras-independent pathway that involves a p39Mos-dependent activation of the mitogen-activated protein (MAP) kinases. Insulin also triggers meiosis resumption through a tyrosine kinase receptor that activates a Ras-dependent pathway leading to the MAP kinases activation. Antisense phosphorothioate oligonucleotides were used to prevent p39Mos accumulation and Erk-like Xp42(Mpk1) activation during insulin-induced Xenopus oocytes maturation. In contrast to previous works, prevention of p39Mos-induced activation of Xp42(Mpk1) in insulin-treated oocytes did not inhibit but delayed meiotic resumption, like in progesterone-stimulated oocytes. Activations of Xp42(Mpk1), the unique Erk of the oocyte, and of its downstream target p90Rsk, were impaired and phosphorylation of the MAPKK kinase Raf was partially inhibited. Similarly, oocytes treated with the MEK inhibitor U0126, stimulated by insulin exhibited delayed germinal vesicle breakdown, absence of Xp42(Mpk1) activation, and partial phosphorylation of Raf. To summarize, whereas p39Mos-induced activation of MEK/MAPK pathway is dispensable for insulin-induced germinal vesicle breakdown, Xp42(Mpk1) activation induced by insulin is dependent upon p39Mos synthesis. Raf complete phosphorylation appears to require the MEK/MAPK pathway activation both in progesterone and insulin-stimulated oocytes.  相似文献   

2.
BACKGROUND: The kinetochore attachment (spindle assembly) checkpoint arrests cells in metaphase to prevent exit from mitosis until all the chromosomes are aligned properly at the metaphase plate. The checkpoint operates by preventing activation of the anaphase-promoting complex (APC), which triggers anaphase by degrading mitotic cyclins and other proteins. This checkpoint is active during normal mitosis and upon experimental disruption of the mitotic spindle. In yeast, the serine/threonine protein kinase Bub1 and the WD-repeat protein Bub3 are elements of a signal transduction cascade that regulates the kinetochore attachment checkpoint. In mammalian cells, activated MAPK is present on kinetochores during mitosis and activity is upregulated by the spindle assembly checkpoint. In vertebrate unfertilized eggs, a special form of meiotic metaphase arrest by cytostatic factor (CSF) is mediated by MAPK activation of the protein kinase p90(Rsk), which leads to inhibition of the APC. However, it is not known whether CSF-dependent metaphase arrest caused by p90(Rsk) involves components of the spindle assembly checkpoint. RESULTS: xBub1 is present in resting oocytes and its protein level increases slightly during oocyte maturation and early embryogenesis. In Xenopus oocytes, Bub1 is localized to kinetochores during both meiosis I and meiosis II, and the electrophoretic mobility of Bub1 upon SDS-PAGE decreases during meiosis I, reflecting phosphorylation and activation of the enzyme. The activation of Bub1 can be induced in interphase egg extracts by selective stimulation of the MAPK pathway by c-Mos, a MAPKKK. In oocytes treated with the MEK1 inhibitor U0126, the MAPK pathway does not become activated, and Bub1 remains in its low-activity, unshifted form. Injection of a constitutively active target of MAPK, the protein kinase p90(Rsk), restores the activation of Bub1 in the presence of U0126. Moreover, purified p90(Rsk) phosphorylates Bub1 in vitro and increases its protein kinase activity. CONCLUSIONS: Bub1, an upstream component of the kinetochore attachment checkpoint, is activated during meiosis in Xenopus in a MAPK-dependent manner. Moreover, a single substrate of MAPK, p90(Rsk), is sufficient to activate Bub1 in vitro and in vivo. These results indicate that in vertebrate eggs, kinetochore attachment/spindle assembly checkpoint proteins, including Bub1, are downstream of p90(Rsk) and may be effectors of APC inhibition and CSF-dependent metaphase arrest by p90(Rsk).  相似文献   

3.
Vertebrate eggs arrest at metaphase of the second meiotic division before fertilization under the effect of a cytostatic factor (CSF). This arrest is established during oocyte maturation by the MAPK kinase module, comprised of Mos, MEK, MAPKs and p90Rsk. Maintenance of CSF arrest at metaphase requires inhibitors of the anaphase-promoting complex (APC) like Emi1, which sequesters the APC activator Cdc20. Although it was proposed that the Mos pathway and Emi1 act independently, neither one alone is sufficient to entirely reproduce CSF arrest. Herein we demonstrate that p90Rsk2 associates with and phosphorylates Emi1 upstream of the binding region for Cdc20, thus stabilizing their interaction. Experiments in transfected cells and two-cell embryos indicate that Emi1 and p90Rsk2 cooperate to induce the metaphase arrest. Moreover, oocyte maturation was impaired by interfering with the interaction between p90Rsk2 and Emi1 or by RNA interference of Emi1. Our results indicate that p90Rsk2 and Emi1 functionally interact during oocyte maturation and that the Mos pathway establishes CSF activity through stabilization of an APC-inhibitory complex composed by Emi1 and Cdc20 before fertilization.  相似文献   

4.
The cell cycle in oocytes generally arrests at a particular meiotic stage to await fertilization. This arrest occurs at metaphase of meiosis II (meta-II) in frog and mouse, and at G1 phase after completion of meiosis II in starfish. Despite this difference in the arrest phase, both arrests depend on the same Mos-MAPK (mitogen-activated protein kinase) pathway, indicating that the difference relies on particular downstream effectors. Immediately downstream of MAPK, Rsk (p90 ribosomal S6 kinase, p90(Rsk)) is required for the frog meta-II arrest. However, the mouse meta-II arrest challenges this requirement, and no downstream effector has been identified in the starfish G1 arrest. To investigate the downstream effector of MAPK in the starfish G1 arrest, we used a neutralizing antibody against Rsk and a constitutively active form of Rsk. Rsk was activated downstream of the Mos-MAPK pathway during meiosis. In G1 eggs, inhibition of Rsk activity released the arrest and initiated DNA replication without fertilization. Conversely, maintenance of Rsk activity prevented DNA replication following fertilization. In early embryos, injection of Mos activated the MAPK-Rsk pathway, resulting in G1 arrest. Moreover, inhibition of Rsk activity during meiosis I led to parthenogenetic activation without meiosis II. We conclude that immediately downstream of MAPK, Rsk is necessary and sufficient for the starfish G1 arrest. Although CSF (cytostatic factor) was originally defined for meta-II arrest in frog eggs, we propose to distinguish ;G1-CSF' for starfish from ;meta-II-CSF' for frog and mouse. The present study thus reveals a novel role of Rsk for G1-CSF.  相似文献   

5.
Vertebrate oocytes arrest in metaphase of the second meiotic division (MII), where they maintain a high cdc2/cyclin B activity and a stable, bipolar spindle because of cytostatic factor (CSF) activity. The Mos-MAPK pathway is essential for establishing CSF. Indeed, oocytes from the mos-/- strain do not arrest in MII and activate without fertilization, as do Xenopus laevis oocytes injected with morpholino oligonucleotides directed against Mos. In Xenopus oocytes, p90Rsk (ribosomal S6 kinase), a MAPK substrate, is the main mediator of CSF activity. We show here that this is not the case in mouse oocytes. The injection of constitutively active mutant forms of Rsk1 and Rsk2 does not induce a cell cycle arrest in two-cell mouse embryos. Moreover, these two mutant forms do not restore MII arrest after their injection into mos-/- oocytes. Eventually, oocytes from the triple Rsk (1, 2, 3) knockout present a normal CSF arrest. We demonstrate that p90Rsk is not involved in the MII arrest of mouse oocytes.  相似文献   

6.
Xenopus oocyte maturation is analogous to G2/M transition and characterized by germinal vesicle breakdown (GVBD), spindle formation, activation of MPF and Mos-Xp42(Mpk1) pathways. It is accompanied prior to GVBD by a transient increase in intracellular pH. We determined that a well known acidifying compound, NH(4)Cl, delayed progesterone-induced GVBD in a dose-dependent manner. GVBD(50) was delayed up to 2.3-fold by 10 mM NH(4)Cl. Cyclin B2 phosphorylation, Cdk1 Tyr15 dephosphorylation as well as p39(Mos) accumulation, Xp42(Mpk1) and p90(Rsk) phosphorylation induced by progesterone were also delayed by incubation of oocyte in NH(4)Cl. The delay induced by NH(4)Cl was prevented by injection of MOPS buffer pH 7.7. In contrast to acidifying medium, alkalyzing treatment such as Tris buffer pH 9 injections, accelerated GVBD, MPF and Xp42(Mpk1) activation, indicating that pHi changes control early steps of G2/M dynamics. When injected in an immature recipient oocyte, egg cytoplasm triggers GVBD through MPF auto-amplification, independently of protein synthesis. In these conditions, GVBD and Xp42(Mpk1) activation were delayed by high concentration of NH(4)Cl, which never prevented or delayed MPF activation. Strickingly, NH(4)Cl strongly inhibited thiophosphorylated active MAPK-induced GVBD and MPF activation. Nevertheless, Tris pH 9 did not have any effects on egg cytoplasm- or active MAPK-induced GVBD. Taken together, our results suggest that dynamic of early events driving Xp42(Mpk1) and MPF activation induced by progesterone may be negatively or positively regulated by pH(i) changes. However Xp42(Mpk1) pathway was inhibited by acidification alone. Finally, MPF auto-amplification loop was not sensitive to pH(i) changes.  相似文献   

7.
A cytoplasmic activity in mature oocytes responsible for second meiotic metaphase arrest was identified over 30 years ago in amphibian oocytes. In Xenopus oocytes CSF activity is initiated by the progesterone-dependent synthesis of Mos, a MAPK kinase kinase, which activates the MAPK pathway. CSF arrest is mediated by a sole MAPK target, the protein kinase p90Rsk which leads to inhibition of cyclin B degradation by the anaphase-promoting complex. Rsk phosphorylates and activates the Bub1 protein kinase, which may cause metaphase arrest due to inhibition of the anaphase-promoting complex (APC) by a conserved mechanism defined genetically in yeast and mammalian cells. CSF arrest in vertebrate oocytes by p90Rsk provides a potential link between the MAPK pathway and the spindle assembly checkpoint in the cell cycle.  相似文献   

8.
Changwei Z  Mingyong X  Ranran W 《FEBS letters》2007,581(14):2670-2674
Afr1p functions to promote adaptation to pheromone-induced growth arrest and morphogenesis. We show here that Afr1p regulates polarized localization of the Mpk1p MAP kinase in shmooing cells. Deletion of AFR1 results in mislocalization of Mpk1p although the scaffold protein Spa2p localizes normally at shmoo tip, and overexpression of Spa2 cannot rescue this defect, indicating Afr1p in required for Spa2p to recruit Mpk1 to the site of polarized growth during mating. Overexpression of SPA2 partially suppresses the morphogenetic defect of afr1Delta cells upon alpha-factor induction, suggesting the two proteins function in the same genetic pathway with Spa2p acts downstream of Afr1p.  相似文献   

9.
Starfish oocytes arrest at metaphase of the first meiotic division (MI arrest) in the ovary and resume meiosis after spawning into seawater. MI arrest is maintained by lower intracellular pH (pHi) and release from arrest by cellular alkalization. To elucidate pHi regulation in oocytes, we cloned the starfish (Asterina pectinifera) Na+/H+ exchanger 3 (ApNHE3) expressed in the plasma membrane of oocytes. The cytoplasmic domain of ApNHE3 contains p90 ribosomal S6 kinase (p90Rsk) phosphorylation sites, and injection of a constitutively active p90Rsk and the upstream regulator Mos to immature oocytes, stimulated an increase in pHi. This increase was blocked by 5-(N-ethyl-N-isopropyl)-amiloride, a NHE inhibitor, and SL0101, a specific Rsk inhibitor. The MAPK kinase (MEK) inhibitor U0126 blocked the Mos-induced, but not the p90Rsk-induced, pHi increase, suggesting that the Mos-MEK-MAPK-p90Rsk pathway promotes ApNHE3 activation. In a cell-free extract, the Mos-MEK-MAPK-p90Rsk pathway phosphorylates ApNHE3 at Ser-590, -606, and -673. When p90Rsk-dependent ApNHE3 phosphorylation was blocked by a dominant-negative C-terminal fragment, or neutralizing antibody, the p90Rsk-induced pHi increase was suppressed in immature oocytes. However, ApNHE3 is up-regulated via the upstream phosphatidylinositol 3-kinase pathway before MAPK activation and the active state is maintained until spawning, suggesting that the p90Rsk-dependent ApNHE3 phosphorylation is unlikely to be the primary regulatory mechanism involved in MI arrest exit. After meiosis is completed, unfertilized eggs maintain their elevated pHi (∼7.4) until the onset of apoptosis. We suggest that the p90Rsk/ApNHE3-dependent elevation of pHi increases fertilization success by delaying apoptosis initiation.  相似文献   

10.
Chromosome condensation during the G2/M progression of mouse pachytene spermatocytes induced by the phosphatase inhibitor okadaic acid (OA) requires the activation of the MAPK Erk1. In many cell systems, p90Rsks are the main effectors of Erk1/2 function. We have identified p90Rsk2 as the isoform that is specifically expressed in mouse spermatocytes and have shown that it is activated during the OA-triggered meiotic G2/M progression. By using the MEK inhibitor U0126, we have demonstrated that activation of p90Rsk2 during meiotic progression requires activation of the MAPK pathway. Immunofluorescence analysis indicates that activated Erks and p90Rsk2 are tightly associated with condensed chromosomes during the G2/M transition in meiotic cells. We also found that active p90Rsk2 was able to phosphorylate histone H3 at Ser10 in vitro, but that the activation of the Erk1/p90Rsk2 pathway was not necessary for phosphorylation of H3 in vivo. Furthermore, phosphorylation of H3 was not sufficient to cause condensation of meiotic chromosomes in mouse spermatocytes. Other proteins known to associate with chromatin may represent effectors of Erk1 and p90Rsk2 during chromosome condensation. Nek2 (NIMA-related kinase 2), which associates with chromosomes, plays an active role in chromatin condensation and is stimulated by treatment of pachytene spermatocytes with okadaic acid. We show that inhibition of the MAPK pathway by preincubation of spermatocytes with U0126 suppresses Nek2 activation, and that incubation of spermatocyte cell extracts with activated p90Rsk2 causes stimulation of Nek2 kinase activity. Furthermore, we show that the Nek2 kinase domain is a substrate for p90Rsk2 phosphorylation in vitro. These data establish a connection between the Erk1/p90Rsk2 pathway, Nek2 activation and chromosome condensation during the G2/M transition of the first meiotic prophase.  相似文献   

11.
Yue J  Ferrell JE 《Current biology : CB》2004,14(17):1581-1586
The ERK1/ERK2 MAP kinases (MAPKs) are transiently activated during mitosis, and MAPK activation has been implicated in the spindle assembly checkpoint and in establishing the timing of an unperturbed mitosis. The MAPK activator MEK1 is required for mitotic activation of p42 MAPK in Xenopus egg extracts; however, the identity of the kinase that activates MEK1 is unknown. Here we have partially purified a Cdc2-cyclin B-induced MEK-activating protein kinase from mitotic Xenopus egg extracts and identified it as the Mos protooncoprotein, a MAP kinase kinase kinase present at low levels in mitotic egg extracts, early embryos, and somatic cells. Immunodepletion of Mos from interphase egg extracts was found to abolish Delta90 cyclin B-Cdc2-stimulated p42 MAPK activation. In contrast, immunodepletion of Raf-1 and B-Raf, two other MEK-activating kinases present in Xenopus egg extracts, had little effect on cyclin-stimulated p42 MAPK activation. Immunodepletion of Mos also abolished the transient activation of p42 MAPK in cycling egg extracts. Taken together, these data demonstrate that Mos is responsible for the mitotic activation of the p42 MAPK pathway in Xenopus egg extracts.  相似文献   

12.
The spindle plays a central role in chromosome segregation during mitosis and meiosis. In particular, various kinesins are thought to play crucial roles in spindle structure and function in both mitosis and meiosis of fungi and animals. A group of putative kinesins has been previously identified in Arabidopsis, called ATK1-ATK4 (previously known as KATA-KATD), but their in vivo functions have not been tested with genetic studies. We report here the isolation and characterization of a mutant, atk1-1, which has a defective ATK1 gene. The atk1-1 mutant was identified in a collection of Ds transposon insertion lines by its reduced fertility. Reciprocal crosses between the atk1-1 mutant and wild type showed that only male fertility was reduced, not female fertility. Molecular analyses, including revertant studies, indicated that the Ds insertion in the ATK1 gene was responsible for the fertility defect. Light microscopy revealed that, in the atk1-1 mutant, male meiosis was defective, producing an abnormal number of microspores of variable sizes. Further cytological studies indicated that meiotic chromosome segregation and spindle organization were both abnormal in the mutant. Specifically, the atk1-1 mutant male meiotic cells had spindles that were broad, unfocused and multi-axial at the poles at metaphase I, unlike the typical fusiform bipolar spindle found in the wild-type metaphase I cells. Therefore, the ATK1 gene plays a crucial role in spindle morphogenesis in male Arabidopsis meiosis.  相似文献   

13.
BACKGROUND: During oocyte maturation in Xenopus, progesterone induces entry into meiosis I, and the M phases of meiosis I and II occur consecutively without an intervening S phase. The mitogen-activated protein (MAP) kinase is activated during meiotic entry, and it has been suggested that the linkage of M phases reflects activation of the MAP kinase pathway and the failure to fully degrade cyclin B during anaphase I. To analyze the function of the MAP kinase pathway in oocyte maturation, we used U0126, a potent inhibitor of MAP kinase kinase, and a constitutively active mutant of the protein kinase p90(Rsk), a MAP kinase target. RESULTS: Even with complete inhibition of the MAP kinase pathway by U0126, up to 90% of oocytes were able to enter meiosis I after progesterone treatment, most likely through activation of the phosphatase Cdc25C by the polo-like kinase Plx1. Subsequently, however, U0126-treated oocytes failed to form metaphase I spindles, failed to reaccumulate cyclin B to a high level and failed to hyperphosphorylate Cdc27, a component of the anaphase-promoting complex (APC) that controls cyclin B degradation. Such oocytes entered S phase rather than meiosis II. U0126-treated oocytes expressing a constitutively active form of p90(Rsk) were able to reaccumulate cyclin B, hyperphosphorylate Cdc27 and form metaphase spindles in the absence of detectable MAP kinase activity. CONCLUSIONS: The MAP kinase pathway is not essential for entry into meiosis I in Xenopus but is required during the onset of meiosis II to suppress entry into S phase, to regulate the APC so as to support cyclin B accumulation, and to support spindle formation. Moreover, one substrate of MAP kinase, p90(Rsk), is sufficient to mediate these effects during oocyte maturation.  相似文献   

14.
Inoue D  Sagata N 《The EMBO journal》2005,24(5):1057-1067
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.  相似文献   

15.
The 90-kDa ribosomal S6 kinases, the p90 Rsks, are a family of intracellular serine/threonine protein kinases distinguished by two distinct kinase domains. Rsks are activated downstream of the ERK1 (p44) and ERK2 (p42) mitogen-activated protein (MAP) kinases in diverse biological contexts, including progression through meiotic and mitotic M phases in Xenopus oocytes and cycling Xenopus egg extracts, and are critical for the M phase functions of Xenopus p42 MAPK. Here we report the cloning and biochemical characterization of Xenopus Rsk2. Xenopus Rsk1 and Rsk2 are specifically recognized by commercially available RSK1 and RSK2 antisera on immunoblots, but both Rsk1 and Rsk2 are immunoprecipitated by RSK1, RSK2, and RSK3 sera. Rsk2 is about 20-fold more abundant than the previously described Xenopus Rsk1 protein; their concentrations are approximately 120 and 5 nm, respectively. Rsk2, like Rsk1, forms a heteromeric complex with p42 MAP kinase. This interaction depends on sequences at the extreme C terminus of Rsk2 and can be disrupted by a synthetic peptide derived from the C-terminal 20 amino acids of Rsk2. Finally, we demonstrate that p42 MAP kinase can activate recombinant Rsk2 in vitro to a specific activity comparable to that found in Rsk2 that has been activated maximally in vivo. These findings underscore the importance of the Rsk2 isozyme in the M phase functions of p42 MAP kinase and provide tools for further examining Rsk2 function.  相似文献   

16.
The motor protein Kar3p and its associated protein Cik1p are essential for passage through meiosis I. In the absence of either protein, meiotic cells arrest in prophase I. Experiments were performed to determine whether the arrest was caused by a structural inability to proceed through meiosis, or by a regulatory mechanism. The data demonstrate that the meiotic arrest is not structural; kar3 and cik1 mutants are able to form normal looking bipolar spindles and divide their DNA into two masses in spo11 mutant backgrounds. To identify the regulatory system necessary for the kar3/cik1 meiotic arrest, we tested whether the arrest could be bypassed by eliminating the pachytene checkpoint or the spindle checkpoint. The arrest is not solely dependent upon the pachytene checkpoint that monitors recombination and aspects of chromosome synapsis. Elimination of the spindle checkpoint failed to allow kar3 mutants to undergo meiosis I nuclear division, but phenotypes of the kar3/spindle checkpoint double mutants suggest that the kar3 meiotic arrest may be mediated by the spindle checkpoint.  相似文献   

17.
The motor protein Kar3p and its associated protein Cik1p are essential for passage through meiosis I. In the absence of either protein, meiotic cells arrest in prophase I. Experiments were performed to determine whether the arrest was caused by a structural inability to proceed through meiosis, or by a regulatory mechanism. The data demonstrate that the meiotic arrest is not structural; kar3 and cik1 mutants are able to form normal looking bipolar spindles and divide their DNA into two masses in spo11 mutant backgrounds. To identify the regulatory system necessary for the kar3/cik1 meiotic arrest, we tested whether the arrest could be bypassed by eliminating the pachytene checkpoint or the spindle checkpoint. The arrest is not solely dependent upon the pachytene checkpoint that monitors recombination and aspects of chromosome synapsis. Elimination of the spindle checkpoint failed to allow kar3 mutants to undergo meiosis I nuclear division, but phenotypes of the kar3/spindle checkpoint double mutants suggest that the kar3 meiotic arrest may be mediated by the spindle checkpoint.  相似文献   

18.
During cell division, a bipolar array of microtubules forms the spindle through which the forces required for chromosome segregation are transmitted. Interestingly, the spindle as a whole is stable enough to support these forces even though it is composed of dynamic microtubules, which are constantly undergoing periods of growth and shrinkage. Indeed, the regulation of microtubule dynamics is essential to the integrity and function of the spindle. We show here that a member of an important class of microtubule-depolymerizing kinesins, KLP10A, is required for the proper organization of the acentrosomal meiotic spindle in Drosophila melanogaster oocytes. In the absence of KLP10A, microtubule length is not controlled, resulting in extraordinarily long and disorganized spindles. In addition, the interactions between chromosomes and spindle microtubules are disturbed and can result in the loss of contact. These results indicate that the regulation of microtubule dynamics through KLP10A plays a critical role in restricting the length and maintaining bipolarity of the acentrosomal meiotic spindle and in promoting the contacts that the chromosomes make with microtubules required for meiosis I segregation.  相似文献   

19.
We have characterized plk1 in mouse oocytes during meiotic maturation and after parthenogenetic activation until entry into the first mitotic division. Plk1 protein expression remains unchanged during maturation. However, two different isoforms can be identified by SDS-PAGE. A fast migrating form, present in the germinal vesicle, seems characteristic of interphase. A slower form appears as early as 30 min before germinal vesicle breakdown (GVBD), is maximal at GVBD, and is maintained throughout meiotic maturation. This form gradually disappears after exit from meiosis. The slow form corresponds to a phosphorylation since it disappears after alkaline phosphatase treatment. Plk1 activation, therefore, takes place before GVBD and MAPK activation since plk1 kinase activity correlates with its slow migrating phosphorylated form. However, plk1 phosphorylation is inhibited after treatment with two specific p34(cdc2) inhibitors, roscovitine and butyrolactone, suggesting plk1 involvement in the MPF autoamplification loop. During meiosis plk1 undergoes a cellular redistribution consistent with its putative targets. At the germinal vesicle stage, plk1 is found diffusely distributed in the cytoplasm and enriched in the nucleus and during prometaphase is localized to the spindle poles. At anaphase it relocates to the equatorial plate and is restricted to the postmitotic bridge at telophase. After parthenogenetic activation, plk1 becomes dephosphorylated and its activity drops progressively. Upon entry into the first mitotic M-phase at nuclear envelope breakdown plk1 is phosphorylated and there is an increase in its kinase activity. At the two-cell stage, the fast migrating form with weak kinase activity is present. In this work we show that plk1 is present in mouse oocytes during meiotic maturation and the first mitotic division. The variation of plk1 activity and subcellular localization during this period suggest its implication in the organization and progression of M-phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号