首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F H Faas  W J Carter  J O Wynn 《Life sciences》1974,15(12):2059-2068
Rat liver microsomal NADH-cytochrome c reductase activity is stimulated by 20 μM thyroxine invitro. Thyroxine does not influence microsomal NADH-dichlorophenolindophenol reductase, NADPH-cytochrome c reductase, or NADPH-dichlorophenolindophenol reductase activity. Stimulation of NADH-cytochrome c reductase activity is not mediated by super-oxide and is likely due to enhanced reduction or oxidation of cytochrome b5.  相似文献   

2.
Cytochrome P-450 was purified from liver microsomes of phenobarbital-pretreated rabbits to a specific content of 16 to 17 nmoles per mg of protein with a yield of about 10 %. The purified cytochrome yielded only a single protein band on sodium dodecylsulfate-urea-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 45,000 was estimated for the protein. The preparation was free of cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c reductase activities. Aniline hydroxylase and ethylmorphine N-demethylase activities could be reconstituted upon mixing the purified cytochrome with an NADPH-cytochrome c reductase preparation (purified by a detergent method) and phosphatidyl choline.  相似文献   

3.
A rat liver nuclear envelope fraction isolated essentially by the technique of Monneron et al. (J. Cell Biol. 55, 104–125 (1972)) is characterized by high levels of glucose-6-phosphatase and 5′-nucleotidase. A broadly specific nucleoside triphosphatase activity is present. Cytochromes b5 and P-450 as well as NADPH- and NADH-cytochrome c reductase activities are present but at lower levels than found in microsomes. Cytochrome c oxidase activity is low. RNA polymerase activity is absent from the nuclear envelope fraction. Cytochemistry shows that glucose-6-phosphatase activity is strong and restricted to the nuclear envelope of nuclei. 5′-Nucleotidase shows weak reaction deposit in whole nuclei but in contrast gives clear reaction deposit in isolated nuclear envelopes. Cytochemical reaction deposit due to nucleoside trisphosphatase activity is not restricted to the nuclear envelope but is found to a larger extent within the nucleus.  相似文献   

4.
Antimycin, when added to resolved succinate-cytochrome c reductase complex in amounts sufficient to partially inhibit succinate-cytochrome c reductase activity, causes a decrease in inhibition of the residual succinate-cytochrome c reductase activity by 2-thenoyltrifluoroacetone. Antimycin has no effect on the inhibition of succinate-ubiquinone reductase activity by 2-thenoyltrifluoroacetone. We propose that antimycin increases the steady state concentration of ubisemiquinone in the reductase complex, and that 2-thenoyltrifluoracetone is competitive with ubisemiquinone.  相似文献   

5.
6.
J Baron  J A Redick  P Greenspan  Y Taira 《Life sciences》1978,22(12):1097-1102
NADPH-cytochrome c reductase (NADPH-cytochrome reductase, EC 1.6.2.4), the flavoprotein which is responsible for the NADPH-dependent reduction of cytochromes P-450 in hepatic microsomes, has been localized immunohistochemically at the light microscopic level in rat liver. Localization was achieved through the use of sheep antiserum to rat hepatic microsomal NADPH-cytochrome c reductase in an unlabeled antibody peroxidase-antiperoxidase technique. Parenchymal cells throughout the liver lobule were found to be stained positively for NADPH-cytochrome c reductase, although the intensity of immunostaining was slightly greater in the centrilobular regions. Immunostaining for NADPH-cytochrome c reductase was not detected in Kupffer cells, connective tissue cells, or in cells of the hepatic vasculature.  相似文献   

7.
An enzyme system in rat liver microsomes which catalyzes the NADH-dependent hydroxylation of 3,4-benzpyrene has been reconstituted. The essential components of this NADH-mediated electron transport chain are cytochrome b5, NADH-cytochrome b5 reductase, lipid, and cytochrome P-448.  相似文献   

8.
F. Feo  R.A. Canuto  R. Garcea  O. Brossa 《BBA》1978,504(1):1-14
The phospholipid depletion of rat liver mitochondria, induced by acetone-extraction or by digestion with phospholipase A2 or phospholipase C, greatly inhibited the activity of NADH-cytochrome c reductase (rotenone-insensitive). A great decrease of the reductase activity also occurred in isolated outer mitochondrial membranes after incubation with phospholipase A2. The enzyme activity was almost completely restored by the addition of a mixture of mitochondrial phospholipids to either lipid-deficient mitochondria, or lipid-deficient outer membranes. The individual phospholipids present in the outer mitochondrial membrane induced little or no stimulation of the reductase activity. Egg phosphatidylcholine was the most active phospholipid, but dipalmitoyl phosphatidylcholine was almost ineffective. The lipid depletion of mitochondria resulted in the disappearance of the non-linear Arrhenius plot which characterized the native reductase activity. A non-linear plot almost identical to that of the native enzyme was shown by the enzyme reconstituted with mitochondrial phospholipids. Triton X-100, Tween 80 or sodium deoxycholate induced only a small activation of NADH-cytochrome c reductase (rotenone-insensitive) in lipiddeficient mitochondria. The addition of cholesterol to extracted mitochondrial phospholipids at a 1 : 1 molar ratio inhibited the reactivation of NADH-cytochrome c reductase (rotenone-insensitive) but not the binding of phospholipids to lipid-deficient mitochondria or lipid-deficient outer membranes.These results show that NADH-cytochrome c reductase (rotenone-insensitive) of the outer mitochondrial membrane requires phospholipids for its activity. A mixture of phospholipids accomplishes this requirement better than individual phospholipids or detergents. It also seems that the membrane fluidity may influence the reductase activity.  相似文献   

9.
Binding of increasing amounts of detergent-purified cytochrome b5 to rabbit liver microsomes produces a progressive inhibition of NADPH-cytochrome P-450 reductase activity which is accompanied by a similar inhibition of NADPH-supported benzphetamine demethylation. In contrast, NADH-cytochrome P-450 reductase activity in the enriched microsomes is markedly enhanced and this stimulation is accompanied by a similar increase in NADH-peroxidase activity, suggesting that cytochrome b5 in these two reactions functions as an intermediate electron carrier to cytochrome P-450.  相似文献   

10.
The effect of pretreatment with phenobarbitone, rifampicin, β-naphthoflavone, antipyrine and spironolactone on the irreversible binding of ethynyloestradiol to guinea pig liver microsomes has been examined and the corresponding changes in microsomal P-450 content and cytochrome c reductase activity measured. Rifampicin produced the greatest increase (220%) in irreversible binding while phenobarbitone produced the greatest increase in both microsomal P-450 content (172%) and cytochrome c reductase activity (210%). There was no correlation of irreversible binding with either microsomal P-450 content or with cytochrome c reductase activity.  相似文献   

11.
Ca2+-dependent K+ transport and plasma membrane NADH dehydrogenase activities have been studied in several ‘high-K+’ (human, rabbit and guinea pig) and ‘low-K+’ (dog, cat and sheep) erythrocytes. All the species except sheep showed Ca2+-dependent K+ transport. NADH-ferricyanide reductase was detected in all the species and showed positive correlation with the flavin contents of the membranes. NADH-cytochrome c reductase was very low or absent in dog, sheep and guinea pig membranes. No correlation was found between NADH dehydrogenase and Ca2+-dependent K+ channel activities in the species studied. Nor were any of the above activities correlated with (Na+ + K+)-ATPase activity.  相似文献   

12.
A highly purified reconstituted system isolated from the microsomes of 3-methylcholanthrene-treated rats consisting of cytochrome P-448, NADPH-cytochrome c reductase and synthetic dilauroyl phosphatidylcholine had no DT diaphorase activity, but hydroxylated benzo[a]pyrene at a faster rate than microsomes from 3-methylcholanthrene-treated rats. DT diaphorase purified from liver microsomes of 3-methylcholanthrene-treated rats when added to this reconstituted system did not stimulate or inhibit benzo[a]pyrene hydroxylation, nor could it replace or NADPH-cytochrome c reductase in supporting the reaction. We therefore conclude that microsomal DT diaphorase is not involved in microsomal hydroxylation of benzo[a]pyrene to its phenolic products despite the observation that both DT diaphorase activity and the hydroxylation of benzo[a]pyrene are induced by 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

13.
An improved synthesis for cobalt-cytochrome c has been developed; its half reduction potential is ?140 ± 20mV. Reduced Cocyt-c3 is oxidized by bovine heart cytochrome c oxidase at a rate ~45% that of the native cytochrome c. It is not reduced by mitochondrial NADH or succinate cytochrome c reductase nor by microsomal NADH or NADPH cytochrome c reductase.  相似文献   

14.
Cytochrome c1, the electron donor for cytochrome c, is a subunit of the mitochondrial cytochrome bc1 complex (complex III, cytochrome c reductase). To test if cytochrome c1 is the cytochrome c-binding subunit of the bc1 complex, binding of cytochrome c to the complex and to isolated cytochrome c1 was compared by a gel-filtration method under non-equilibrium conditions (a bc1 complex lacking the Rieske ironsulfur protein was used; von Jagow et al. (1977) Biochim. Biophys. Acta 462, 549–558). The approximate stoichiometries and binding affinities were found to be very similar. Binding of cytochrome c to isolated cytochrome b which is another subunit of the reductase was not detectable by the gel-filtration method. Further, the same lysine residues of cytochrome c were shielded towards chemical acetylation in the complexes c:c1 and c:bc1. From this we conclude that the same surface area of cytochrome c is in direct contact with cytochrome bc1 and with cytochrome c1 in the respective complexes and that therefore cytochrome c is most probably the structural ligand for cytochrome c in mitochondrial cytochrome c reductase.  相似文献   

15.
A protein named oxidation factor can be reversibly removed from succinate-cytochrome c reductase complex and shown to be required for electron transfer between succinate and cytochrome c. This protein is required for reduction of cytochrome c1 and, in the presence of antimycin, for reduction of both cytochromes b and c1. These results are consistent with a protonmotive Q cycle mechanism in which the oxidation factor catalyzes electron transfer from reduced quinone to cytochrome c1 and thus liberates from reduced quinone one of two protons required for energy conservation during electron transfer through the cytochrome b-c1 complex.  相似文献   

16.
When bakers' yeast cells which had been grown anaerobically in galactose were aerated in the presence of 10% glucose, they showed a 40% decrease in invivo [14C]-leucine incorporation into a washed mitochondrial membrane fraction compared with cells which had been aerated in a low glucose medium. The observed catabolite repression of membrane protein synthesis was primarily due to a decrease in cytoplasmic translational activity, but this repression was entirely dependent upon concomitant mitochondrial translation. The inductions of reduced coenzyme Q cytochrome c reductase (complex III) and of cytochrome c oxidase (complex IV) activities were repressed 30 and 60%, respectively, by aeration of the cells for 8 hours in 10% glucose. The catabolite repression of the formation of these two inner membrane complexes was again shown to be dependent upon concomitant mitochondrial translation. Both the amino acid incorporation and enzyme induction data suggest that catabolite repression of both cytoplasmically and mitochondrially translated mitochondrial membrane proteins is mediated through a mitochondrially translated repressor.  相似文献   

17.
The role of cytochrome b5 in the p-nitroanisole O-demethylation was studied with a reconstituted system containing a unique cytochrome P-450, isolated from rabbit liver microsomes as a species with a high affinity for cytochrome b5. The maximal activity was obtained in the complete system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, NADH-cytochrome b5 reductase, and Triton X-100 in addition to cytochrome b5. The omission of cytochrome b5 from the complete system entirely abolished the activity. These results clearly show that cytochrome b5 is obligatory in the reconstitute p-nitroanisole O-demethylation system, and this cytochrome P-450 probably interacts with cytochrome b5 in such a way that the second electron is transferred from cytochrome b5 and thus exhibits the demethylase activity.  相似文献   

18.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

19.
Microsomal membranes from potato tubers were treated with a phospholipase C extracted from Bacillus cereus. A positive correlation could be observed between the hydrolysis of membranous phospholipids and the decrease of the NADH-cytochrome c reductase activity. Addition of total lipid or phospholipid micelles to phospholipase C-treated microsomes partially restored the NADH-cytochrome c reductase activity, thus proving the lipid-dependence of this enzyme.  相似文献   

20.
An antibody prepared against purified rat liver NADPH-cytochrome c reductase inhibited both the pulmonary and hepatic microsomal covalent binding of 4-ipomeanol as well as the respective NADPH-cytochrome c reductase activities, findings which are consistent with previous studies which indicated the participation of cytochrome P450 in the metabolic activation of the toxin. An antibody prepared against purified rat liver cytochrome b5, which strongly inhibited both the rat hepatic and pulmonary NADH-dependent cytochrome c reductases, and was inactive against the respective NADPH-dependent cytochrome c reductases, had little effect on metabolic activation of 4-ipomeanol by hepatic microsomes, but strongly inhibited both the NADH-supported and the NADPH-supported pulmonary microsomal metabolism and covalent binding of the compound. These results suggest that metabolic activation of 4-ipomeanol involves a two-electron transfer in which transfer of the second electron via cytochrome b5 is rate-limiting in lung microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号